

委托单位:安徽江淮汽车集团股份有限公司商务车分公司

编制单位:安徽省通源环境节能股份有限公司

- 零一九年六月

项目组及职责简介

项目名称:安徽江淮汽车集团股份有限公司商务车分公司厂区土壤隐患排查与监测项目

委托单位:安徽江淮汽车集团股份有限公司商务车分公司

编制单位:安徽省通源环境节能股份有限公司

检测单位: 江苏省优联检测技术服务有限公司

项目负责人:赵杰

技术负责人: 王啟华

商务负责人: 彭勇

项目组成员: 陶敬、徐明、张佩佩、刘贵军

项目组职责分工:

项目岗位	姓名	职称	职责	
项目负责人	赵杰			
			场组织管理	
技术负责人	王啟华	高级工程师	技术负责及报告审核	
商务负责人	彭勇	工程师	商务关系接洽	
	张佩佩	助理工程师	现场实施	
	徐明	助理工程师	现场实施	
	陶敬	工程师	现场实施及报告编制	
	刘贵军	助理工程师	现场实施	
项目组成员	专业钻井设			
	备操作工3	_	钻井取样设备操作	
	名			
	CMA 检测实			
	验室人员3		现场样品采集及检测	
	名			

统一社会信用代码 91340100705049496E

安徽省通源环境节能股份有限公司

型 股份有限公司(非上市)

住

所 安徽省合肥市包河区金寨南路856号

法定代表人 杨明

注册 资本 致任叁佰万圆整

成 立 $\boldsymbol{\exists}$ 期

1999年04月15日

营业期 限

/长期

范 韦

环境污染治理施工; 环保工程施工, 防渗工程施 工;污泥处置项目建设、运营;餐厨垃圾处理;污 水处理;渗滤液处理;沼气综合利用;重金属、有 机物污染治理与修复, 地下水污染防控与修复, 老 工业基地再开发、矿山生态环境修复,景观生态水 体建设; 机电设备安装施工; 防水、防腐、保温工 程施工及技术咨询,防水、防腐、保温材料生产、 销售,室内外装饰、水电安装,建筑材料、五金、 化工产品(除危险品))销售;压滤机及相关配套 产品的研发、生产、制造。(依法须经批准的项 目,经相关部门批准后方可开展经营活

登记机关

2017

每年1月1日至6月30日填报年度报告

企业信用信息公示系统网址: http://www.ahcredit.gov.cn 中华人民共和国国家工商行政管理总局监制

专家评审意见表

《安徽江淮汽车集团股份有限公司商务车分公司厂区 土壤污染隐患排查与监测报告》专家评审意见

2019年8月22日,安徽江淮汽车集团股份有限公司商务车分公司在合肥市组织召开了《安徽江淮汽车集团股份有限公司商务车分公司厂区土壤污染隐患排查与监测报告》(下称"报告")专家评审会。参加会议的单位有安徽江淮汽车集团股份有限公司商务车分公司、肥西县环境保护局、安徽省通源环境节能股份有限公司(编制单位)的代表。会议邀请了3名专家组成专家组(名单附后),与会专家听取了编制单位的汇报,经讨论形成如下意见:

一、《报告》编制规范,内容较为全面,经修改完善后,可作为 下一步工作开展依据。

二、建议:

- 1、完善场地历史,进一步调查厂区内重点区域、重点设施和特征污染物及迁移途径;
- 2、结合厂区水文地质等相关资料,完善采样深度依据和地下水 流向图等相关内容;
 - 3、加强数据分析,校核隐患排查结论,充实相关建议。

专家组签名: 7年 九芸

经我方认真听取专家意见后,根据评审意见,报告修改内容如下:

1.完善场地历史,进一步调查厂区内重点区域、重点设施和特征污染物及迁移途径。

答复: 完善场地历史见 P37-P41, 进一步调查厂区内重点区域、重点设施和特征污染物及迁移途径见 P23-P37、P46-P53。

2.结合厂区水文地质等相关资料,完善采样深度依据和地下水流向图等相关内容。

答复:厂区地质水文及地下水流场资料见 P44-P45,采样深度依据完善见 P72。

3.加强数据分析,校核隐患排查结论,充实相关建议。

答复:加强数据分析,校核隐患排查结论见 P91-P92,充实相关建议见 P97-P99。

录目

执行摘要	9
1.概述	11
1.1 任务由来	11
1.2 排查与监测范围	11
1.3 工作内容及技术路线	12
1.3.1 排查与监测内容	12
1.3.1 技术路线	12
1.4 编制依据	14
1.4.1 国家相关法律、法规、政策	14
1.4.2 相关标准	14
1.4.3 相关技术导则	15
1.4.4 相关技术规范	15
1.4.5 相关资料	15
1.5 隐患排查及监测方法	15
2.项目背景调査	17
2.1 前期准备	17
2.2 资料收集	17
2.2.1 项目所在地自然环境概况	17
2.2.2 企业概况	19
2.2.3 产品、产能及原辅材料使用情况	21
2.2.4 生产工艺及设备	23
2.2.5 污染物识别	23
2.2.6 主要污染源产生及排放情况	34
2.2.7 地块利用变迁	37
2.3 现场踏勘	41
2.3.1 厂区及周边踏勘	41

	2.3.2 敏感目标分布	43
	2.4 厂区地质水文情况	44
	2.4.1 地质情况	44
	2.4.2 水文情况	45
3.土壤污	f染隐患排查	46
3.1	污染物质排查	46
	3.1.1 污染物情况汇总	47
	3.1.2 污染物毒性分析	49
	3.1.3 污染物排查结果	54
3.2	重点设施设备及活动排查	54
	3.2.1 厂区生产加工装置排查	54
	3.2.2 液体存储排查	56
	3.2.2 散装和包装货物的存储与运输	58
	3.2.3 管线	60
	3.2.4 其他活动	
3.3	土壤隐患排查结论	65
4.土壤环	F境监测	66
4.1	潜在污染区域分析	66
4.2	调查监测	67
	4.2.1 调查监测布点方案	67
	4.2.2 样品采集和保存	71
	4.2.3 监测工作量统计	76
	4.2.4 样品检测	76
	4.2.4 质量控制及二次污染防范	80
4.3	监测结果分析	84
	4.3.1 土壤环境污染评价标准	
	4.3.2 监测结果分析	87
5.结论和	Πæίÿ	96

5.1 土壤隐患排查与监测结论	96
5.1.1 土壤隐患排查结论	96
5.1.2 土壤环境监测结论	97
5.2 建议	97
附件 1: 附录	100
附录 A 附图	100
附录 B 附表	101
附件 2 关于进一步明确重点行业企业用地调查相关要求的通知	102
附件 3 厂区平面及卫星图	109
附件 4 厂区雨污水管网图	110
附件 5 人员访谈表	112
附件 6 采样记录表	121
附件 7 检测资质	144
附件 8 检测能力表	147
附件 9 检测报告	165
附件 10 样品采集及检测现场	181

执行摘要

为响应国家《土壤污染防治行动计划》(简称"土十条")及《安徽江淮汽车集团股份有限公司商务车分公司土壤污染防治责任书》(以下简称"土壤防治责任书")的要求,针对安徽江淮汽车集团股份有限公司商务车分公司(以下简称商务车分公司)厂区内土壤隐患排查与监测取样及检测内可能存在的土壤污染问题,为此提供场地土壤环境污染隐患排查及相关监测技术方案。根据制定的技术方案对厂区内的土壤及地下水环境的潜在污染来源进行排查并结合企业生产活动对场地的影响,进而了解厂区内的污染隐患,为下一步针对重点疑似污染区域详细调查提供科学依据。

商务车分公司主要从事商务车生产,首先对厂区生产工艺、生产加工设备、原辅材料存储及固废堆放、污水处理等可能存在土壤污染隐患区域进行逐一排查 并对厂区内潜在的污染物质检测,结论如下:

- (1) 安徽江淮汽车集团股份有限公司商务车分公司厂区内自建厂以来存在的 污染土壤及地下水的潜在污染因子有重金属(铅、砷、镍、锌)、环烷烃、芳香 烃、石油烃、二甲苯、NH3—N等。
- (2) 安徽江淮汽车集团股份有限公司商务车分公司厂区生产加工装置都设置 在密闭车间内,且运行维护措施完善,容易造成土壤污染的地下储罐、危废站、 污水处理站等都有完善的日常管理制度,针对各种污染源有相应的处理措施,并 针对可能发生的环境事故制定应急措施,因此生产活动中未发现环境污染隐患。
- (3)针对徽江淮汽车集团股份有限公司商务车分公司厂区内产生的污染因子进行采样监测,结果显示: 1)土壤中重金属、石油烃均有检出,挥发性有机物、半挥发性有机物未检出。对比筛选值,检出污染物远低于筛选值,土壤样品中无污染物超标。经过2年的监测,厂区内土壤都未有污染物明显累积,可见,厂区内土壤目前处于良好状态,未有污染。2)水样PH值介于7.10-7.34之间,所有样品均达到III类标准。3)重金属锌、铅、砷、汞有检出,挥发性有机物未检出,与筛选值比对后可知,检出的重金属均未超过地下水III类标准。

根据连续 2 年对安徽江淮汽车集团股份有限公司商务车分公司厂区排查与 监测结果分析,商务车分公司厂区生产活动未影响本区域内土壤及地下水环境, 为保持土壤及地下水良好状态,提出如下建议:

- 1) 持续推进清洁生产工作和加强对重点设施、设备的日常监管;
- 2) 落实层级环保责任,确保各个废弃物处置环节责任到人,将员工利益与 环境保护绩效直接挂钩,提高员工的积极性;
- 3)通过模拟突发环境事件演练来检验环境预案的可操作性,提升员工的处置事故能力。对于地下水要实行监测,监测频次要符合地下水质量监测规范要求;
- 4)对污水处理管道和设施定期排查检修,防止污水滴漏现象发生,同时在 雨季做好防渗和排污工作,保持水质良好状态。

1.概述

1.1 任务由来

为响应国家《土壤污染防治行动计划》(简称"土十条")及《安徽省环保厅关于加强土壤环境污染重点监管企业土壤环境监管的通知》(合环土函(2018)230号),安徽江淮汽车集团股份有限公司商务车分公司签订了《安徽江淮汽车集团股份有限公司商务车分公司土壤污染防治责任书》,责任书要求企业每年要自行对企业用地进行土壤环境监测,结果向社会公开。受安徽江淮汽车集团股份有限公司商务车分公司委托,安徽省通源环境节能股份有限公司承担《安徽江淮汽车集团股份有限公司商务车分公司厂区土壤隐患排查与监测项目》的调查工作,重点对生产区以及原材料与废物堆存区、储放区、转运区、污染治理设施等及其运行管理开展土壤污染排查。通过收集资料、现场排查对厂区内土壤及地下水环境进行监测。根据排查及监测情况,制定土壤污染隐患整改方案。

1.2 排查与监测范围

本次土壤隐患排查与监测项目地为安徽江淮汽车集团股份有限公司商务车分公司 厂区,总面积约 297 亩,排查与监测范围见图 1.2-1 所示。



图 1.2-1 排查与监测范围

1.3 工作内容及技术路线

1.3.1 排查与监测内容

依据《建设用地土壤环境调查评估技术指南》及《重点行业企业用地调查疑似污染地块布点技术规定(试行)》等技术规范排查工业企业生产活动导致的地块土壤污染隐患,要识别可能造成土壤污染的污染物、设施设备和生产活动,并对其设计及运行管理进行审查和分析,确定存在土壤污染隐患的设施设备和生产活动,对土壤污染的隐患进行评估与风险分级。具体工作内容如下:

- (1) 搜集总结企业生产活动中是否涉及危险化学品、危险废物、一般工业固体废物等物质,存在以上物质时,污染土壤的风险较大。
- (2) 搜集总结企业生产活动中涉及的重点设施设备,包括散装液体存储、散装液体运输及内部转运、散装和包装材料的存储与运输、生产加工及其他设施设备等,通过资料搜集、现场巡查判断土壤污染的可能性。
- (3)根据污染源、污染物类型、污染物进入土壤和地下水的途径等,识别该企业可能存在的污染物类型及其分布,以此制定场地土壤监测方案,采集土壤和地下水样品,依据和分析第三方检测机构(具有 CMA 资质)的样品检测数据,判断企业存在的土壤污染隐患风险,结合相关污染防治的要求,提出合理的整改意见:
- (4)向环保局提交《安徽江淮汽车集团股份有限公司商务车分公司厂区土壤隐患排查与检测报告》。

1.3.1 技术路线

本次隐患排查与相关监测工作主要可以分为四个阶段,分别为前期准备阶段、隐患排查阶段、取样监测阶段、结果分析和报告编制(图 1.3-1)。

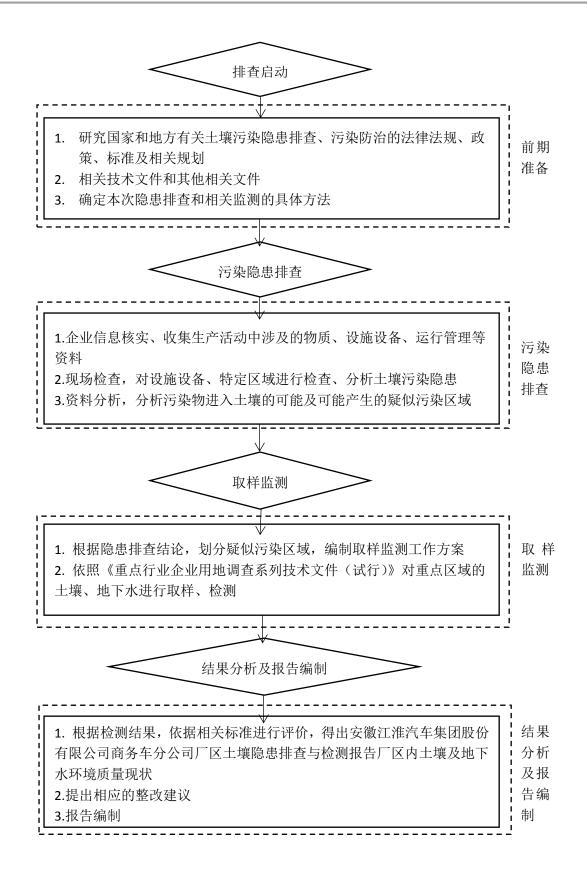


图 1.3-1 土壤污染隐患排查工作流程

1.4 编制依据

1.4.1 国家相关法律、法规、政策

- (1) 《中华人民共和国环境保护法》,2014年4月24日修订通过,2015年1月1日起施行;
- (2) 《中华人民共和国土壤污染防治法》,2018年8月31日通过,2019年1月1日 起施行;
- (3) 《中华人民共和国水污染防治法》,2017年6月27日修订通过,2018年1月1日起施行;
- (4) 《中华人民共和国固体废物污染环境防治法》,2016年11月7日修正版;
- (5) 《中华人民共和国环境环境影响评价法》,2016年7月2日通过,2016年9月1日起施行;
- (7) 《国务院关于印发土壤污染防治行动计划的通知》(国发[2016] 31 号), 2016 年 5 月 28 日;
- (8) 《关于印发重点行业企业用地调查系列技术文件的通知》(环办土壤[2017]67号), 2017年8月14日:
- (9) 《工矿用地土壤环境管理办法(试行)》(生态环境部令部令第 3 号), 2018 年 4 月 12 日修订通过, 2018 年 8 月 1 日起施行;
- (10) 《污染地块土壤环境管理办法(试行)》(生态环境部令部令第 42 号), 2016 年 12 月 27 日修订通过, 2017 年 7 月 1 日起施行;
- (11) 《关于进一步明确重点行业企业用地调查相关要求的通知》(环办土壤函〔2018〕 924 号),
- (12)《关于征求《场地环境调查技术导则》(HJ 25.1-2014)等 5 项国家环境保护标准修改单(征求意见稿)意见的函》环办标征函[2018]63 号
- (13) 《安徽省土壤污染防治工作方案》,(皖政发[2016]116号),2016年12月29日;
- (14) 《安徽省环境保护条例》, 2017 年 11 月 17 日修订通过, 2018 年 1 月 1 日起施行;

1.4.2 相关标准

- (1) 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》GB36600—2018
- (2) 《地下水质量标准》

GB/T 14848-2017

(3) 《危险废物鉴别标准》 GB 5085.1-2007

(4) 《城市用地分类与规划建设用地标准》 GB 50137-2011

1.4.3 相关技术导则

(1) 《场地环境调查技术导则》 HJ 25.1-2014

(2) 《场地环境监测技术导则》 HJ 25.2-2014

(3) 《污染场地风险评估技术导则》 HJ 25.3-2014

(4) 《污染场地土壤修复技术导则》 HJ 25.4-2014

(5) 《工业企业土壤污染隐患排查和整改指南》,2018

(6) 《在产企业土壤和地下水自行监测指南》征求意见稿

1.4.4 相关技术规范

(1) 《土壤环境监测技术规范》 HJ/T166-2004

(2) 《地下水环境监测技术规范》 HJ/T164-2004

(3) 《在产企业地块风险筛查与风险分级技术规定》 (试行);

(4) 《重点行业企业用地调查疑似污染地块布点技术规定》 (试行);

(5) 《重点行业企业用地调查样品采集保存和流转技术规定》(试行)

(6) 《地下水质检验方法 水样的采集和保存》 DZ/T 0064.2

1.4.5 相关资料

- (1)《安徽江淮汽车股份有限公司商务车分公司突发环境事件应急预案》2016 年 9 月
- (2)《安徽江淮汽车股份有限公司商务车分公司突发环境事件风险评估报告》2016 年9月
 - (3)《安徽江淮汽车股份有限公司瑞风多功能商务车产能提升项目环境影响报告书》 (报批稿) 2011 年 5 月
 - (4) 江淮总图-桃花厂区乘用车轻卡污水图
 - (5) 江淮总图-桃花厂区乘用车轻卡雨水图
 - (6) 现场勘查获取的资料

1.5 隐患排查及监测方法

本隐患排查及监测项目方法为:在资料收集、现场探勘和人员访谈的基础上,合理

布设监测点位,对场地进行环境监测取样分析,判断场地是否受到污染、污染类型及程度,为下一步决策提供依据。

2.项目背景调查

2.1 前期准备

研究国家和地方有关土壤污染隐患排查、污染防治的法律法规、政策、标准及相关规划,并对相关技术文件和其他相关文件进行收集分析,确定本次隐患排查和相关监测的具体方法,具体见前文 1.5。

2.2 资料收集

2.2.1 项目所在地自然环境概况

1.地理位置

合肥市经济技术开发区桃花工业园内,具体地址位于合肥市经济开发区丹霞路 282 号江淮汽车工业园,地理位置见图 2.2-1 所示。

图 2.2-1 项目地理位置

2.气候条件

合肥市历年年平均降水量为 984.3mm,最大降水量 1541.96mm,最小降水量 573.0mm,降水量年内分配明显不均,其中 6~8 月份降水量最多,约为全年的 42%,历年年平均蒸发量 1495.1mm。商务车分公司所在地属亚热带北缘,季风北亚热带湿润气候区,具有四季分明、气候温和、日照充足、雨量充沛、无霜期较长的特点。该区多

年平均气温15.9°C,极端最高气温41.0°C,极端最低气温-20.6°C。年平均降水量998.4mm,年均风速2.8m/s。主导风向为东风,次主导风向为东南东风;春季主导风向为东南东风,其余季节主导风向为东风。

合肥地表水系较为发达,以江淮分水岭为界,岭北为淮河水系,岭南为长江水系,淮河水系主要有东淝河、沛河、池河等,长江水系主要有南淝河、派河、丰乐河、杭埠河、滁河、裕溪河、兆河、柘皋河、白石天河、西河等。境内巢湖是中国五大淡水湖之一。东西长 54.5 公里,南北宽 21 公里,水域面积 770 平方公里,号称"八百里巢湖",湖底海拔 5 米,湖水容量随水位高程的不同而不同,当水位高程达 14 米时,湖水容量为 63.7 亿立方米。

合肥市地区地下水较贫乏。第四系松散土层含水量极小,地下水类型为松散岩类孔隙水及上层滞水为主,上层滞水水质主要受控于地表环境。地下水水质优良,水质类型为非甲烷总烃 O3-Ca、Mg 型,对混凝土无侵蚀性。项目区地下水主要为孔隙水或承压水,水位埋深 1.6~2.80m,对混凝土无侵蚀性,总体流向自西南向东北。

3. 水文条件

本项目位于合肥经济技术开发区内,该区域地表水受纳水体主要为派河,属于巢湖水系。

巢湖是我国五大淡水湖泊之一,属长江下游左岸水系,距合肥市约 15km。巢湖流域面积 13350km², 其中巢湖闸以上 9130km², 多年平均水位为 8.31m, 平均水深 3.06m, 水位变化幅度平均为 2.5m, 水位为 7.5~7.8m 时湖泊水域面积约 760km²。巢湖是巢湖市等地主要饮用水水源。巢湖入湖河流有店埠河、南淝河、十五里河、派河、丰乐河、杭埠河、兆河等 33 条水系,主要通过裕溪河与长江进行水交流,因建巢湖闸和裕溪河闸,巢湖由原来的过水性河流性湖泊变成了受人工控制的半封闭、封闭式湖泊,其水域的水基本上不与长江水交流。

派河源于肥西县江淮分水岭枣林岗及紫蓬山脉北麓,东南向注入巢湖,流域面积为571km²,年径流量为29.0万m³,多年平均来水量1.88亿m³,其中上游为防虎北麓丘陵岗地,该处河槽深而坡陡,下切甚烈,中下游以冲积平原为主,河宽30-70m,高程5-7m。整个河道可以分为上派段、中派段和下派段,河道全长60km,河道平均比降为1.18%。

4. 地质条件

合肥市处于古老的江淮丘陵、地貌岗冲起伏、宏观地形西北高、东南低、呈现较缓

的波状平原状态,地面标高一般在 12~45 米之间,合肥市区高程大致在 10.4~43.4m 范围,少许沿河低洼地区在 8.4~10.4m。本区土地类型多样,分为低山丘陵、低丘岗地和平原圩区三大类,分别占陆地总面积的 5%,87.2%和 7.8%。大蜀山海拔高程为 282 米,西北小蜀山海拔高程为 158 米。

合肥地区土地承载力在 2.5~2.8kg/cm 之间, 地下基岩埋深 10-15 米, 为第三纪红砂岩, 无明显地下河道, 无地质断层。合肥地处华北、扬子地台两个地史发展特点不同地块相交部位, 位于华北地块合肥盆地南缘。在地质发展过程中, 经历了多次构造运动, 有着复杂的地质构造格局, 属于中等地震活动区。自公元 294 年至今, 对合肥有影响的地震记3次。国家地震总局 1977 年颁布的《全国地震裂度区划图》, 划定合肥市的地震基本烈度为7度。合肥市列为全国 38 个重点抗震城市之一。

合肥经济技术开发区地形基本为岗冲起伏的丘陵,地势总体呈北高南低,地面高程在 15~70 米之间。

5.土壤

合肥地区土壤以黄棕壤、水稻土两类为主要土壤,约占全部土壤的 85%。其余为石灰(岩)土、紫色土和砂黑土。全市境域内土壤酸碱度适中,一般中性偏酸,较适宜各种作物生长。

2.2.2 企业概况

1.企业简介

安徽江淮汽车股份有限公司商务车分公司位于合肥市经济技术开发区桃花工业园 江淮汽车工业园内。江淮汽车工业园区内原有安徽江淮汽车股份有限公司轻卡二厂、轻 卡三厂以及商务车分公司。现轻卡厂区已搬迁,园区内设有一座废水预处理站及污水处 理总站,均由威立雅公司统一运营,由商务车公司负责日常管理。

商务车分公司集瑞风多功能商务车及备件的研发、制造、销售和服务于一体。公司设有冲压车间、焊装车间、涂装车间以及总装车间,2015年公司生产瑞风多功能商务车37764辆。

商务车分公司基本情况汇总见下表 2.2-1, 厂区建设内容见表 2.2-2。

表 2.2-1 企业简介

公司名称	安徽江淮汽车集团股份有限公司
组织机构代码	91340123733037089X
法定代表人	李明
地址(企业地理位置图见附件1)	合肥市经济技术开发区丹霞路 282 号
中心经度、中心维度	东经 117°13′,北纬 31°46′
行业类别	汽车整车制造 3610
建厂年月	1999
最新改扩建年月	/
主要联系人和联系电话	纪玉婷 18963786342
最近一年的企业规模 (产品和产量)	瑞风多功能商务车 37764 辆
厂区面积	/
职工人数	1243 人
生产班次	一班 8h 生产制
上级公司名称/所属集团公司名称	安徽江淮汽车集团股份有限公司

表 2.2-2 厂区建设内容一览表

类别	名称	工程内容及规模			
	冲压车间	现有 5 条冲压生产线(其中 A 线 1 条, B 线 2 条, C 线 2 条), A 线为全自动线。			
	焊装车间	承担年产 10 万辆商务车的焊装任务			
主体工程	涂装车间	现有一条涂装生产线,设有前处理电泳系、涂密封胶系统、中 涂及面涂系统,承担年产10万辆商务车的涂装任务。			
	总装车间	设有一条总装生产线,承担年产 10 万辆商务车的总装任务。			
辅助生产工	办公楼	建筑面积为 3251m²			
程	员工就餐中心	负责饮食制作及供应			
储运工程	半成品库	负责冲压件半成品的贮存、入库和发放以及质量检查和问题处 理。			

类别	名称	工程内容及规模
	试车跑道	对装配后的整车进行路试
	停车场	存放、管理和发生生产的成品车
	供油站	1 个 7m³ 汽油罐,一个 7m³ 柴油罐
	降压站及变配电 所	提供全厂用电
	空压站 供全厂生产所需的压缩空气,供气能力为 255.5	
公用工程	供热(四元体可 燃废气间接热风 炉)	采用燃烧天然气的方式产生热量,涂装车间安装 10 台四元体热风炉(电泳烘干线 3 台,中涂烘干线 3 台,面漆烘干线 4 台,)并在该系统前安装风幕设备为了防止燃烧天然气产生的热量散发。
	废水处理	厂区污水处理站和重金属污水处理设施均委托威立雅运营。
环保工程	废气治理	喷漆室文式净化处理,漆雾处理效率 96%,喷漆废气与流平室 废气经一根排气筒排放;烘干室废气采用四元体可燃废气间接 热风炉进行燃烧处理,处理效率 96%以上。
	固废治理	危废设置临时储存场所,交托有资质单位定期处理

2.2.3 产品、产能及原辅材料使用情况

1.产品、产能

商务车分公司产品名称及设计产能如表 2.2-3 所示。

表 2.2-3 项目生产规模一览表

产品名称	设计产能(辆)	2015 年产量(辆)
瑞风多功能商务车	100000	37764

2.原辅材料消耗

商务车分公司主要原辅料来源:钢板由国内钢厂供应,电泳漆、中涂、面漆、其余原辅料利用公司材料供应体系供应。根据公司最大生产能力,统计公司(10万辆/a)主要原辅料的使用情况,具体见下表所示。

表 2.2-4 项目主要原辅材料及能源一览表

				工女原相切科及配源 见农	年用量
序号	名称	形态	储存方式	主要成分	(t/a)
1	钢材卷料	固态	/	包括各种产品	66700
2	CO ₂ 焊丝	固态	/	包括各种产品	5
3	脱脂剂	固态	塑料袋装	主要成分 Na ₂ CO ₃ 、NaPO ₄ ³⁻ 、LAS	73
4	磷化液	液态	铁桶装	主要成分 ZnO、MnCO ₃ 、Fe 离子、 NiNO ₃ 、HNO ₃ 、H ₃ PO ₄	82.5
5	表调剂	固态	塑料袋装	主要成分 NaPO ₄ 3-、磷酸胶钛	7.3
6	促进剂	固态	塑料袋装	/	29.3
7	电泳底漆	液态	铁桶装	无铅电泳漆。主要成分颜料浆固体分、 树脂固体分、乙二醇乙醚等	147
8	车底涂料	液态	铁桶装	/	147
9	焊缝密封胶	液态	铁桶装	/	50
10	中涂漆	液态	铁桶装	油性漆。主要成分去离子水 30%、聚酯树脂、氨基树脂、聚酯乳液、颜料、添加剂(分散剂、增稠剂等)、溶剂(酯酮醚醇类)等	180
11	面漆 B1	液态	铁桶装	油性漆。固体分 36%,包括聚丙烯酸 树脂、丙烯酸/聚氨酯、聚酯、铝粉、 添加剂(分散剂、增稠剂)等;去离子 水 30%,其他溶剂(酯酮醚醇类)34%	200
12	面漆 B2	液态	铁桶装	油性漆。固体分 20%,包括聚丙烯酸树脂、丙烯酸/聚氨酯、聚酯、铝粉、添加剂(分散剂、增稠剂)等;去离子水 60%,其他溶剂(酯酮醚醇类)20%	313
13	罩光漆	液态	铁桶装	二甲苯 5%、1,2,4-三甲苯、异丙基苯、 乙苯、溶剂(酯酮醚醇类)等	230
14	罩光漆稀释 剂	液态	铁桶装	二甲苯 5%、酯酮醚醇类、正丁醇等	62.5
15	洗枪溶剂	液态	铁桶装	二甲苯 9%、溶剂(酯酮醚醇类)等	12.3
16	漆雾凝聚剂	液态	铁桶装	/	92.7
17	汽油	液态	地下灌区	/	1000
18	柴油	液态	地下灌区	/	800
19	机油	液态	桶装	/	270
20	齿轮油	液态	桶装	/	150
21	制动液	液态	桶装	/	64
22	洗涤液	液态	桶装	三乙醇胺 20%	400
23	冷却液	液态	桶装	/	800
24	冷媒	液态	桶装	二氟一氯甲烷 100%	80

2.2.4 生产工艺及设备

商务车分公司产品的主要生产工艺包括冲压、焊装、涂装以及总装等。主要生产工 艺流程如下所示: 本项目主要生产设备见表 2.2-5。

	1		1	
车间	工艺名称	反应条件	是否有敏感 工艺装备	是否有淘汰类落后生 产工艺装备
冲压车间	全自动冲压生产线	常温常压	否	否
焊装车间	/	常温常压	否	否
涂装车间	清洗、磷化、电泳、喷漆	常温常压	否	否
总装车间	/	常温常压	否	否

表 2.2-5 项目主要工艺和设备一览表

注:①"反应条件"包括:高温(工艺温度≥300℃)、高压(压力容器的设计压力≥10MPa)、易燃和易爆物质(按照GB20576至GB20602《化学品分类、警示标签和警示性说明安全规范》所确定的化学物质)。若没有上述这3种条件,填写"非高温、非高压、无易燃和易爆物质"即可。

②"敏感工艺装备"指列在《重点监管危险化工工艺目录》上或者《产业结构调整指导目录》(最新年本)中有淘汰期限的淘汰类落后生产工艺装备。

③淘汰类落后生产工艺装备:列在《产业结构调整指导目录》(最新年本)中有淘汰期限的生产工艺装备。

2.2.5 污染物识别

1. 冲压车间

原材料进入冲压车间,剪切后上冲压线冲压成型,送到冲压件库存放。按照需求用 叉车再送到焊装车间。具体位置如图 2.2-2 所示。

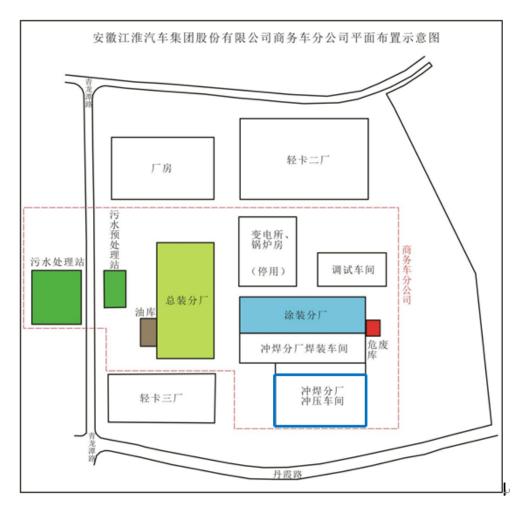


图 2.2-2 冲压车间分部位置

(1) 生产工艺流程及产污节点

1)全自动冲压生产线工艺流程及产污节点见图 2.2-3。

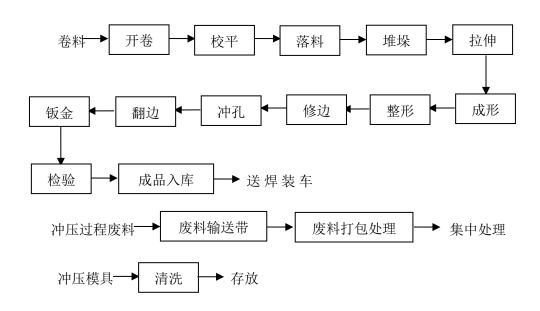


图 2.2-3 全自动冲压生产线工艺及排污节点图

根据以上工艺流程,全自动冲压生产线产生的污染物有废金属屑、清洗废水等可能会对土壤及地下水造成污染。

2. 焊装车间

焊装生产所需的冲压件、小焊合件按需送往各分总成焊装生产区,经小件焊装-分总成焊装-白车身总成焊装、调整,经检验合格后白车身总成送往涂装车间。具体位置如图 2.2-5 所示。

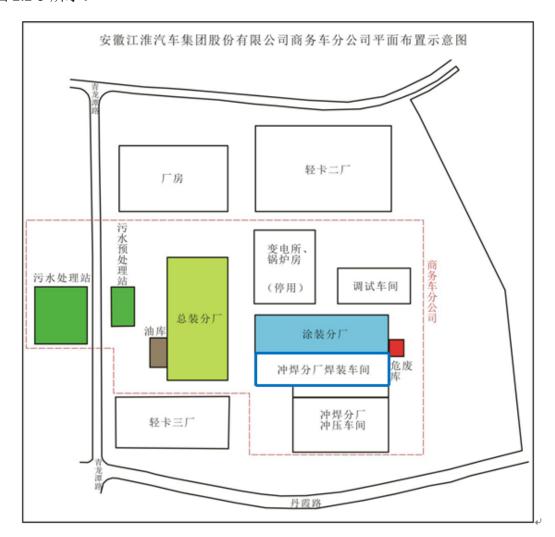


图 2.2-4 焊装车间分部位置

(1) 生产工艺流程及产污节点

1) 焊装主要工艺流程及产污节点

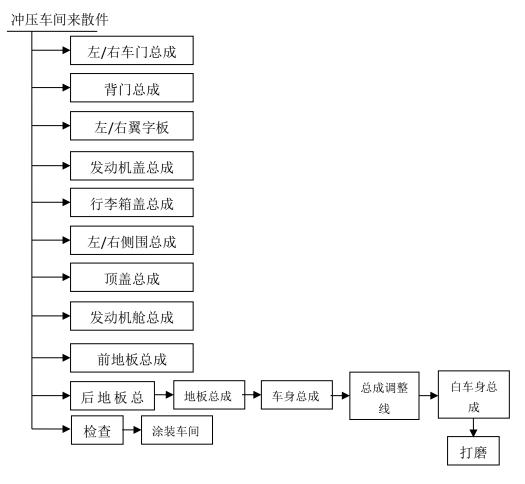


图2.2-5 焊装工艺流程及排污节点图

根据以上工艺流程,焊装车间生产过程中产生的主要污染物为总成调整线 CO2 气体保护焊机产生的焊接烟尘以及打磨时产生的少量金属粉尘,同时还有废油(防锈油和抗磨液压油)等,如对这些物质处置不当,可能会对土壤及地下水造成污染。

3. 涂装车间

在涂装车间经前处理、阴极电泳、中、面、涂漆后,装涂好的车身同样按照生产节拍运到总装车间的内饰线的前端,在内饰线上进行内饰装配。具体位置如图 2.2-6 所示。

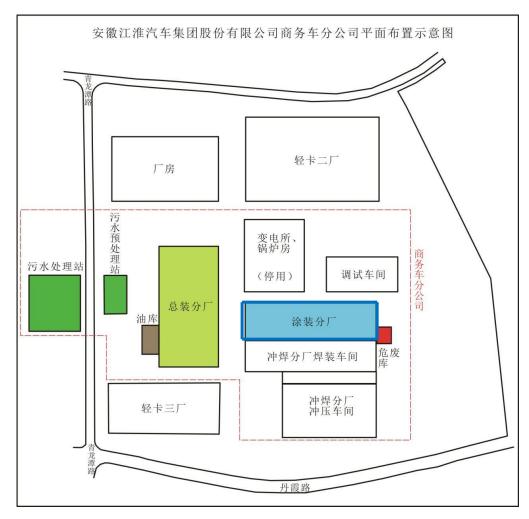


图 2.2-6 焊装车间分部位置

1) 涂装主要工艺流程及产污节点

图2.2-7 涂装工艺流程及排污节点图

①预脱脂、脱脂工序采用磁性过滤器,以除去槽液内的细小金属屑; 脱脂槽设置油水分离装置, 以延长脱脂液的使用时间。

②表面调整

采用磷化表面调整剂使需要磷化的金属表面改变微观状态,促使磷化过程中形成结晶细小、均匀、致密的磷化膜。表调剂采用磷酸钛胶体溶液,定期排放表调槽液,主要污染因子为磷酸盐。

③磷化

为提高金属表面漆膜附着的牢固性,白车身(或车架)在电泳前进行磷化处理。磷化在磷化液槽中进行。磷化剂主要是磷酸锌及镍盐,磷化液定期补充。磷化段设磷化除渣系统(纸袋过滤机过滤),滤液重复使用,磷化渣做为危险废物处理。磷化槽液定期更换即磷化废液。磷化后工件进行淋洗产生磷化废水,磷化废水为连续排放。废液及废水中主要污染因子有总 Zn、总 Ni 及磷酸盐。

4)阴极电泳

经磷化处理的白车身(或车架),需进行电泳涂装,电泳漆膜均匀,附着牢固。

电泳槽连续循环搅拌,定期进行清洗,清洗时产生洗槽废液即电泳废液。电泳后工件采用 UF 循环水 5 级(喷淋、喷淋、浸洗、喷淋、浸喷)逆流漂洗,1 级采用新鲜 UF 喷淋洗涤,1 级循环去离子水淋洗和1 级新鲜去离子水淋洗。工件漂洗过程采用超滤措施,回收大部分的电泳漆。

⑤涂密封胶

对电泳车身的焊缝处涂密封胶,然后涂防震隔热的 PVC 胶。

⑥打磨

电泳、喷中涂漆后,均需用磨料进行打磨,为湿式打磨,产生打磨废水,主要污染因子为 SS。

⑦中涂和面漆

电泳后的车身需涂一道中间涂层,再涂一道面漆和罩光漆,最后喷蜡。上述各工序 生产过程中使用含二甲苯、酯类、醇类等有机溶剂的涂料及稀释剂,因此喷漆工序有有 机废气和喷漆废水排放,有机废气主要污染因子为二甲苯和漆雾。

⑧烘干

电泳、涂胶、喷中涂漆、喷面漆各工序均需进行烘干处理。所有烘干均在用天然气

加热空气的干燥室中进行。烘干工序有大量的有机废气排放,主要污染因子为二甲苯。4. 总装车间

本车间承担总成装配、驾驶室内饰、前桥分装、后桥分装、发动机与变速器合装、安全性能检测、环保性能检测等任务。主要工段有配套工段、内饰工段、底盘装配工段、总装工段、检测工段等。具体位置如图 2.2-8 所示。

图 2.2-8 总装车间分部位置

1) 总装主要工艺流程及产污节点

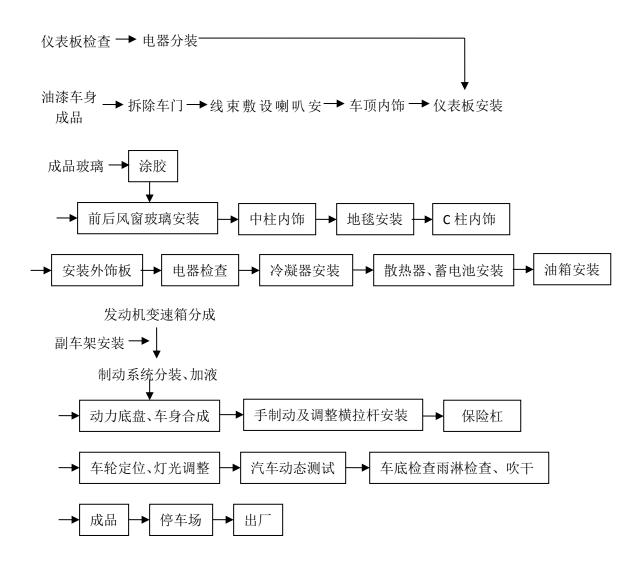


图 2.2-9 总装工艺流程及排污节点图

工艺概述:

①内饰线:负责车身的内饰装配和调整。主要装配内容为: 拆车门、装配发动机舱线束、侧围衬垫、比例阀、离合总泵、EMI线束、冷凝器、干燥罐、仪表板、雨刮、减震器、变速操纵杆、支架、暖风机、蒸发器、前后风挡玻璃及侧窗玻璃、密封胶条顶灯、扶手、踏板、手制动、安全带等。

②底盘装配线:负责整车底盘部件,包括机械总成、动力总成等的装配。装配的主要内容有:装邮箱油管、前轴、前后悬挂、后桥总成、动力总成(发动机、变速箱、前桥、后桥和传动轴等)、制动管路连接、排气消声器总成、管线连接和整理、蓄电池、

备胎、前后大灯、前后保险杠、加注油液及车轮总成等。

③总装配线:装好车轮的整车通过悬链垂直升降机,落到地面装配线上完成最终装配,该线采用地面板式输送机,装配的主要内容有:前后座椅、方向盘、装上分装好的车门、燃油加注、外管初检,最后启动发动机进行检查和调整,然后下线。

④整车检测调整工段:整车检测线包括四轮定位、前大灯和转鼓试验、废气分析、噪音检测、电器检测和底盘检查,然后再淋雨线上完成车身的密封性试验,合格车辆进行路试,主要测试底盘的装配质量和车辆的操纵性。不合格车辆将进入返修区检修,需要补漆的进入补漆室。

主要污染物为整车下线及检测时产生的含 NOx 尾气及发动机噪声,补漆室产生的少量的含二甲苯有机废气,淋雨试验定期排放的废水,同时还有废油(机油和柴油)等,如对这些物质处置不当,可能会对土壤及地下水造成污染。

5. 油库

本厂区内的油库主要储存汽油和柴油,采用地下储罐的形式,在厂区中的位置如图 2.2-10 所示。

汽油的成分比较复杂,主要是烷烃,从 C4 到 C12,其中以 C5 到 C9 为主。柴油主要成分为环烷烃和芳香烃等。在使用过程中可能会出现泄漏等问题,从而造成土壤及地下水污染。

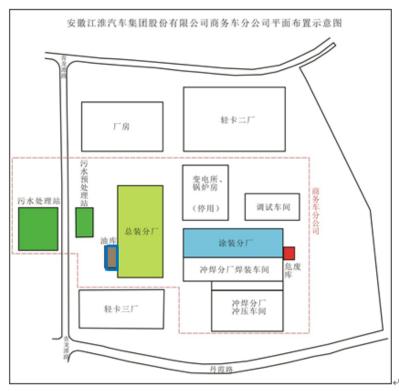


图 2.2-10 油库分部位置

6. 危废库

10

本厂区危废库所处位置如图 2.2-11 所示。

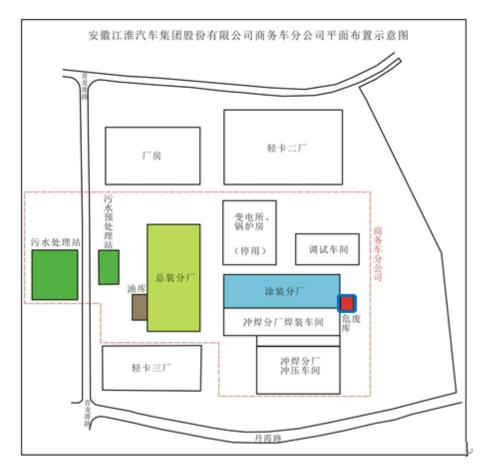


图2.2-11 危废库分布位置

固废站主要临时堆放处置个生产环节产生的危废,如表 2.2-6 所示。

序号 种类 1 废漆渣 2 磷化渣 3 废有机溶剂 4 废混合液 含油漆废物 (漆皮、毛刷、纸盒) 5 6 废胶沾染物 7 废胶 保温棉、过滤棉 8 油棉纱头、手套、塑料皮 9 废硒鼓、墨盒、色带等

表 2.2-6 主要危废一览表

序号	种类		
11	废日光灯管		
12	废油漆		
13	报废化学试剂		
14	废旧电池		
15	油泥		
16	含油过滤器		
17	含油吸附剂		
18	含油沙		
19	涂料桶		
20	非涂料桶		

7. 污水站

污水站处理的废水主要包括生活污水、清洗废水、废磷化液、脱脂废水、喷漆废水等等,主要涉及的污染物有 pH、COD、SS、NH₃-N、石油类、含锌镍废水等。污水站如出现设备故障或是超负荷处理的情况下可能会对土壤及地下水造成危害。

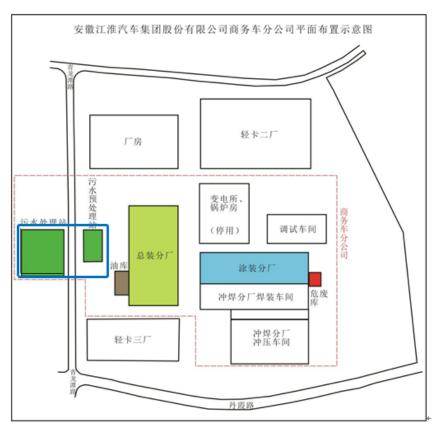


图 2.2-12 污水站分布位置

8. 原煤堆场

在商务车厂区有一座煤堆场,位于变电所锅炉房附近,位置如图 2.2-13 所示。目前该煤堆场已停用,煤矿石中一般含有砷、铅等重金属,因此此畜土壤中可能会残留砷、铅等污染因子。

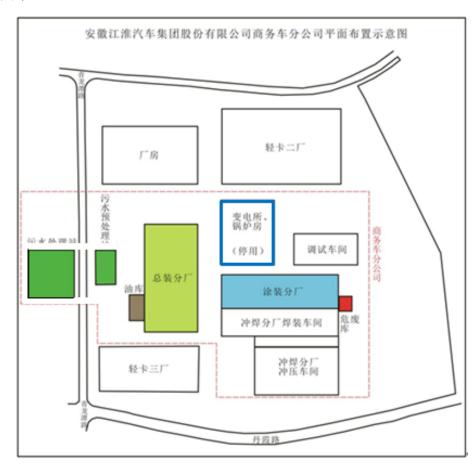


图2.2-13 原煤堆场位置

9. 生产配套设施

厂区生产配套实施主要包括办公区、变电站和锅炉房(停用)、调试车间、停车场等,生产配套区域的生活垃圾,生活污水等可能会对厂区内土壤及地下水产生污染。

2.2.6 主要污染源产生及排放情况

本厂区主要污染源产生及排放情况如表 2.2-7、2.2-8 所示。

(1) 废气及废水

企业废气及废水产生及排放情况见下表所示。

表 2.2-7 企业废气及废水产生及排放情况一览表

污染物类别	污染物	单位	产生量	削减量	排放量
	二甲苯	t/a	37.01	33.31	3.7
ris E	漆雾	t/a	5.5	5.0	0.5
废气	焊接烟尘	t/a	0.55	/	0.55
	烟(粉)尘	t/a	19.09	17.19	1.9
	生产废水	m ³ /a	58659.57		
	生活污水	m ³ /a	33357.6	21079.6	83958.5
	清洁废水	m ³ /a	13021		
	浓盐水	m ³ /a	15023.1	0	15023.1
废水	COD	t/a	133.70	131.82	1.88
	磷酸盐	t/a	4.24	4.236	0.004
	石油类	t/a	6.55	6.543	0.007
	总 Ni	t/a	0.54	0.54	8.51E-05
	废水排放达标率	%	/	/	100

(2) 固废

企业主要危险废物产生及排放情况以及储存处置措施见下表所示。

序号	种类	类别及代码	产生量 (t/a)	储存处置措施	排放量 (t/a)
1	废漆渣	危险废物 HW12	75	暂存于厂区固废站内, 委托安徽浩悦环境科技 有限公司进行处理	0
2	磷化渣	危险废物 HW17	30		0
3	废有机溶剂	危险废物 HW42	25		0
4	废混合液	危险废物 HW49	3		0
5	含油漆废物(漆皮、毛刷、纸盒)	危险废物 HW49	9		0
6	废胶沾染物	危险废物 HW36	10		0
7	废胶	危险废物 HW13	3		0
8	保温棉、过滤棉	危险废物 HW36	2.5		0
9	油棉纱头、手套、 塑料皮	危险废物 HW49	14		0
10	废硒鼓、墨盒、色 带等	危险废物 HW49	0.5		0
11	废日光灯管	危险废物 HW29	0.24		0
12	废油漆	危险废物 HW12	3		0

序号	种类	类别及代码	产生量 (t/a)	储存处置措施	排放量 (t/a)
13	报废化学试剂	危险废物 HW49	0.05		0
14	废旧电池	危险废物 HW49	0.5		0
15	油泥	危险废物 HW49	2		0
16	含油过滤器	危险废物 HW49	0.5		0
17	含油吸附剂	危险废物 HW49	0.2		
18	含油沙	危险废物 HW49	0.5		
19	非涂料桶	危险废物 HW49	4000 (只)	储存在厂区危废库(空 桶)中,定期送安徽嘉 朋特环保科技服务有限 公司进行处置	0

表 2.2-8 企业危险废物产生以及处置措施一览表

序号	种类	类别及代码	产生量 (t/a)	储存处置措施	排放量 (t/a)
1	废漆渣	危险废物 HW12	75		0
2	磷化渣	危险废物 HW17	30		0
3	废有机溶剂	危险废物 HW42	25		0
4	废混合液	危险废物 HW49	3		0
5	含油漆废物(漆 皮、毛刷、纸盒)	危险废物 HW49	9		0
6	废胶沾染物	危险废物 HW36	10		0
7	废胶	危险废物 HW13	3		0
8	保温棉、过滤棉	危险废物 HW36	2.5	松 君子已应回南从上	0
9	油棉纱头、手套、 塑料皮	危险废物 HW49	14	暂存于厂区固废站内, 委托安徽浩悦环境科技	0
10	废硒鼓、墨盒、色 带等	危险废物 HW49	0.5	- 有限公司进行处理 ·	0
11	废日光灯管	危险废物 HW29	0.24		0
12	废油漆	危险废物 HW12	3		0
13	报废化学试剂	危险废物 HW49	0.05		0
14	废旧电池	危险废物 HW49	0.5		0
15	油泥	危险废物 HW49	2		0
16	含油过滤器	危险废物 HW49	0.5		0
17	含油吸附剂	危险废物 HW49	0.2		

序号	种类	类别及代码	产生量 (t/a)	储存处置措施	排放量 (t/a)
18	含油沙	危险废物 HW49	0.5		
19	非涂料桶	危险废物 HW49	4000 (只)	储存在厂区危废库(空 桶)中,定期送安徽嘉 朋特环保科技服务有限 公司进行处置	0

2.2.7 地块利用变迁

商务车分公司集瑞风多功能商务车及备件的研发、制造、销售和服务于一体。公司设有冲压车间、焊装车间、涂装车间以及总装车间,结合历史卫星影像图中看出厂区变迁情况,如图 2.2-10 列出了此地块自 2004 年至 2019 年间的卫星影像图。

厂区建厂前该地块是农田和居民区,商务车分公司与 1999 年成立至今经历一次产能提升,厂房和设备位置基本没有变化,从 2004 年至 2019 年间的卫星影像图也可以看出商务车分公司厂区在建厂的 10 几年间变动不大。

2004.4:

2008.2:

2010.10:

2012.3:

2014.3:

2017.10

2019.3

图 2.2-10 地块历史卫星影像图

2.3 现场踏勘

现场勘查阶段,通过现场踏勘和人员访谈的方式,对地块污染源、周边环境和敏感受体信息进行收集,并核实资料准确性,同时了解地上及地下基础设施(管线、缆线等)的位置。人员访谈记录表见附件。

2.3.1 厂区及周边踏勘

为了核实前期收集到资料,我们对厂区进行详细的实地踏勘,主要是对厂区车间状况、生产设备位置、地上、地下管线进行踏勘。本厂区各生产车间地面采取防渗处理,各生产设备运转正常,无老化现象,无泄漏痕迹。地上管线主要是天然气管道,地下管线主要是雨水管网和污水管网,见附件 4。

因污染物有迁移作用,在一定范围内,其他企业工业生产也有可能会对商务车分公司厂区土壤及地下水产生影响。商务车分公司周边分布着许多工业生产区,经踏勘 1Km 范围内分布的工业厂区如下表所示:

表 2.3-1 厂区 1Km 范围内企业分布

序号	企业名称	方位	距厂区边界距离(m)
1	轻卡二厂	N	23
2	轻卡三厂	S	30
3	中国石化加油站	W	331
4	合肥华润神鹿药业有限 公司	WS	277
5	中国石油	WS	652
6	送变电工业园	NW	774
7	安徽大道模具股份公司	Е	718
8	安徽国通管业股份有限	EN	911
	公司工业园		
9	安徽加井橡塑制品有限	Е	1100
	公司		

图 2.3-1 厂区周边工业园区分布

2.3.2 敏感目标分布

受本厂区影响范围内无自然保护区、风景旅游点和文物古迹等需要特殊保护的环境敏感对象。总体上不会因本厂区的生产而改变区域环境现有功能,具体环境保护目标如表 2.3-2:

表 2.3-2 1Km 主要环境保护目标一览表

编号	名称	方位	距离 (米)
1	繁华世家	N	680
2	尚泽大都会	N	477
3	四方花苑	W	750
4	华凤国际	W	590
5	廿埠社区	W	800
6	丹霞新村	W	940
7	和安家园	S	900
8	桃花工业园公租房	S	450
9	汇峰苹果小镇	S	600
10	桃花社区	S	740
11	江汽五村	S	840
12	红莲社区	S	660
13	明珠华庭	S	700
14	金都嘉园	S	800
15	莲花新村	S	900
16	莲花科技创新产业园	Е	620
17	安徽合肥技师学院	Е	920
18	国轩名门	Е	750
19	名筑花园	SE	820

备注: 主导风向 SE

2.4 厂区地质水文情况

2.4.1 地质情况

商务车分公司场地地貌单元为江淮丘陵岗地及斜坡,由第四纪晚更新世(Q3)粘性 土构成上部地层,下伏基岩风化带为红色砂岩,埋深约35m。该场地土层自上而下依次 为:

- ① 层杂填土: 层厚 0.5-2.1m, 灰、褐色。
- ② 层黏土: 层厚 0.5-1.2m, 褐, 黄褐色, 可塑。
- ③ 层黏土: 层厚 0.9-2.4m, 灰褐、黄褐色, 硬塑。
- ④ 层黏土: 层厚 0.7-1.3m, 灰黄、黄色, 硬塑。
- ⑤ 层黏土: 该层未钻穿,黄、棕黄色,硬塑,坚硬状态。

2.4.2 水文情况

该场地地下水类型主要为上层滞水,其含水量与地表水及大气降水密切相关。通过对厂 区内3口地下水监测井分析,整个场地无统一的地下水位。具体见下表。

编号	井深(m)	筛管埋深(m)	静止水位 (m)
GW1	6	5.7	2.60
GW4	6	5.7	2.14
GW5	6	5.7	1.67

表 2.3-3 建井参数

本次地下水监测期间(2019年5月21日~5月22日)量测的该层地下水静止水位埋深为1.67~2.60 m,平均埋深2.14m,水流方向由北向南。

2. 厂区地下水流场

图2.3-3所示为利用2019年5月21日~5月22日测量于本次设置的3口地下水监井水位数据绘制的该层地下水流场图,从图中可以看出,项目场地该层地下水的总体流向为自北向南。

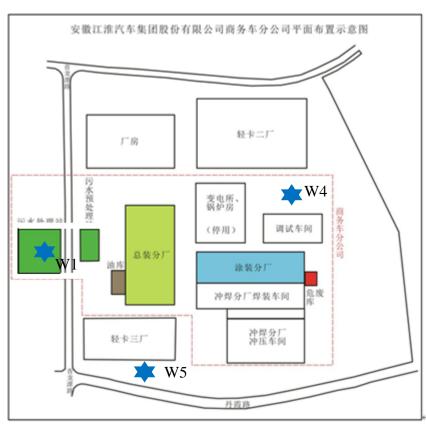


图 2.3-3 厂区地下水勘查井示意图

3.土壤污染隐患排查

3.1 污染物质排查

根据安徽江淮汽车集团股份有限公司商务车分公司主要产品及生产工艺,在生产活动中可能造成污染的物质具体如下:

表 3.1-1 识别出的企业环境风险物质清单

放置区域	化学物质	最大储存量(t)
	罩光清漆TT662(X)-CLEAR(SP)	1.44
	海军蓝金属漆 TT666(X)-MARINEBLUE(MR)	0.36
	暖银灰金属漆 TT666(X)-WARMSILVER(YK)	1.8
	富贵白素色漆 TT6630(X)-NOBLEWHITE(NW)	0.72
	烟灰色金属漆 TT666(X)-SMOKYGRAY(SG)	0.27
	黑檀色素色漆 TT666(X)-EBONYBLACK(EB)	0.27
	灰色中涂漆FU2240-GREY	1.47
	JAC红褐色面漆	0.36
	普通油漆	0.3
	自动机清洗用溶剂 043	2.4
涂装车间调 - 漆间	慢干溶剂 TH0090	0.48
	稀释剂003	0.48
	稀释剂029S	0.48
	稀释剂0355	1.44
	稀释剂064	0.48
	JAC-201稀释剂	0.24
	JAC-301稀释剂	0.24
	罩光清漆用稀释剂 062	0.48
	JAC-740稀释剂	0.16
	电泳溶剂	0.54
	电泳色浆 F-1	0.9

放置区域	14	最大储存量(t)	
	ŧ	1泳乳液	3.6
		7664-38-2氟硅酸	0.217
	磷化补充剂、PB-L315R添 加剂、PB-L315m添加剂	7664-38-2 磷酸	0.434
		13138-45-9 硝酸镍	0.04
		10124-54-6 硝酸铁	0.04
	中和剂(4	497-19-8 纯碱)	0.72
	7697	-37-2 硝酸	0.3
	7631-99	-4 硝酸钠溶液	0.3
	7632-00-0 亚硝酸钠溶液		0.22
	脱脂剂(1310-58-3 氢氧化钾)		2.4
调漆罐及油 漆输送管道	油漆及其混合物		0.1
	汽车模具防锈油		0.1
冲焊车间	工序间防锈油		0.34
	抗	磨液压油	3.4
	冷媒		0.3
总装车间	柴油机油		1.02
		5.1	
∕₩ ‰h ÷Ŀ		柴油	7
供油站		汽油	7
天然气管道		/	0.7

3.1.1 污染物情况汇总

根据对以上对各厂区生产及污染情况的分析以及识别出的,可初步判断该场地各厂区潜在污染环节及相应污染物,见下表 3.1-1:

表 3.1-2 厂区潜在污染物

广区	生产活动	产污环节		潜在污染物			污染机理	污染介质			
			重金	环烷烃	芳香烃	石油烃	二甲苯	酸碱	其他		
			属								
冲压	冲压成形	冲压、磨具清洗	\checkmark						$\sqrt{}$	沉降、渗漏	土壤、地下水
车间											
焊接	焊接	焊接、化学品临时	\checkmark	\checkmark	√	\checkmark		√	$\sqrt{}$	沉降、散发	土壤、地下水
车间		储存									
涂装	涂装	调漆间、化学品存放	\checkmark				$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	沉降、渗漏	土壤、地下水
车间											
总装	部件装配、总成装配、	总装、试验		√	√	\checkmark	$\sqrt{}$		$\sqrt{}$	沉降、散发、	土壤、地下水
车间	出厂试验、返修、后									渗漏	
	装完整										
污水站	污水处置	污水跑冒滴漏	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$	渗漏	土壤、地下水
固废站	固废处置	转移、堆放	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	沉降、渗漏	土壤、地下水
油库	发动机	油品跑冒	$\sqrt{}$	$\sqrt{}$	√	\checkmark				散发、渗漏	土壤、地下水
	试验	滴漏									
原煤	燃料	堆放、燃烧	$\sqrt{}$						√	沉降、渗漏	土壤、地下水
堆场											
生产	人员活动	生活垃圾	-					√	√	渗漏	土壤、地下水
配套											

3.1.2 污染物毒性分析

1. 重金属毒性分析

污染物	理化性质	毒性分析
铅	铅为带蓝色的银白色重金属,它	铅进入人体后是十分难排出的,
	有毒性,是一种有延伸性的主族	同时血铅给人,尤其是儿童,造
	金属。熔点 327.502℃,沸点	成的伤害是不可逆的。血铅进入
	1740℃,密度 11.3437g/cm^3,	人体后相当大的比例以盐的形
	比热容 0.13 kJ/(kg K), 硬度 1.5,	式储存在骨骼当中,且随着人的
	原子体积 18.17 立方厘米/摩尔,	寿命增加,骨中的铅呈逐渐上升
	质地柔软, 抗张强度小。	趋势。骨中的铅一般是不会转化
		为血铅的,因为其为不溶解的形
		式。但在某些条件下,骨中的铅
		可以转化为血铅。
砷	元素符号As,元素周期表中原子	砷及其化合物具有毒性, 所以当
	序数33,是VA 族非金属元素。	人体砷摄入量过多时, 就会造成
	密度为5.727g/cm³,熔点为	砷中毒。一般来说, 无机砷比有
	817°C,沸点为614°C。砷是	机砷的毒性大, 三价砷比五价砷
	一种非金属元素,单质有灰、黑	的毒性大。砷的氧化物(如三氧
	和黄三种同素异形体,但只有灰	化二砷)和盐类绝大部分属高
	砷在工业上具有重要的用途,并	毒,而砷化氢则属剧毒物质,是
	且灰砷也是最常见的单质形态,	目前已知的砷化合物中毒性最
	性脆而硬, 具有金属般的光泽,	大的一个。三氧化二砷和三氧化
	导热、导电性能良好,易被捣成	砷对眼、上呼吸道和皮肤均有刺
	粉沫。砷不溶于水,但溶于硝酸、	激作用。
	王水和强碱。	
镍	银白色坚硬金属固体,密度:	金属镍几乎没有急性毒性,正常
	8.902g/cm3, 相对密度8.90, 蒸	人每天从饮食中摄入微量的镍。
	气压0.13(1810℃),熔点	小量镍能使胰岛素分泌增加,血
	1453℃,沸点2732℃。粉尘可燃,	糖降低,故认为它是胰岛素的一
	能与空气形成爆炸性混合物。不	种辅基。一般镍盐毒性也较低,
	溶于浓硝酸,溶于稀硝酸,稳定。	但羰基镍却能产生很强的毒性。
		急性中毒时可见血管功能紊乱,
		慢性时还见红细胞增生,其中以
		金属镍尘的作用较显著,可能与

过性表碳当化气酸铜属	交脆;100~150℃时,变软;超过200℃后,又变脆。锌的化学是质活泼,在常温下的空气中,是面生成一层薄而致密的碱式碳酸锌膜,可阻止进一步氧化。各温度达到225℃后,锌剧烈氧化。锌在空气中很难燃烧,在氧气中发出强烈白光。锌易溶于较,也易从溶液中置换金、银、剥等。锌的氧化膜熔点高,但金属锌熔点却很低,所以在酒精灯	中毒(zinc poisoning)主要由于应 用镀锌的器皿制备或储存酸性 饮料,此时酸性溶液可分解出较 多的锌以致中毒。其他原因为误 用锌盐后出现口、咽及消化道糜 烂,唇及声门肿胀,腹痛,泻、 吐以及水和电解质紊乱。重者可 见血压升高、气促、瞳孔散大、 休克、抽搐等危象。吸入大量锌 蒸气可引起急性金属烟雾热。慢 性锌中毒极少见。
属上	《锌熔点却很低,所以在酒精灯 上加热锌片,锌片熔化变软,却 下落下,正是因为氧化膜的作	
铝 银湿腐 气 目 硝 钾	是白色轻金属。有延展性。在潮湿空气中能形成一层防止金属 医蚀的氧化膜。铝粉和铝箔在空气中加热能猛烈燃烧,并发出眩目的白色火焰。易溶于稀硫酸、 持酸、盐酸、氢氧化钠和氢氧化 即溶液,难溶于水。相对密度	研究发现,铝元素能损害人的脑细胞。根据世界卫生组织的评估,规定铝的每日摄入量为0~0.6mg/kg。铝在人体内是慢慢蓄积起来的,其引起的毒性缓慢、且不易察觉,然而,一旦发生代谢紊乱的毒性反应,则后果非常严重。

2. 环烷烃毒性分析

环烷烃是含有脂环结构的饱和烃。有单环脂环和稠环脂环。含有 1 个脂环且环上无取代烷基的环烷烃,分子通式为 CnH2n。环戊烷、环己烷及它们的烷基取代衍生物是石油产品中常见的环烷烃。稠环环烷烃存在于高沸点石油馏分中。环烷烃有很高的发热量,凝固点低,抗爆性介于正构烃和异构烃之间。化学性质和烷烃相似。其中以五碳脂环和

六碳脂环的性质较稳定。

环烷烃在人体肠道不能被吸收或消化,同时妨碍水份的吸收。正常人大量摄入可能会导致大便不成型、腹泻,长期摄入可导致消化功能异常,影响脂溶性维生素 A、D、K 和钙、磷等的吸收。

3. 芳香烃毒性分析

芳香烃中毒性较大当属多环芳烃。多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)是分子中含有两个以上苯环的碳氢化合物,截止 2013 年 4 月份已知的多环芳烃 约有 200 多种。

多环芳烃大部分是无色或淡黄色的结晶,个别具深色,熔点及沸点较高,蒸气压很小,大多不溶于水,易溶于苯类芳香性溶剂中,微溶于其他有机溶剂中,辛醇-水分配系数比较高。多环芳烃大多具有大的共扼体系,因此其溶液具有一定荧光。一般说来,随多环芳烃分子量的增加,熔沸点升高,蒸气压减小。多环芳烃的颜色、荧光性和溶解性主要与多环芳烃的共扼体系和分子苯环的排列方式有关.随 p 电子数的增多和 p 电子离域性的增强,颜色加深、荧光性增强,紫外吸收光谱中的最大吸收波长也明显向长波方向移动;对直线状的多环芳烃,苯环数增多,辛醇-水分配系数增加,对苯环数相同的多环芳烃,苯环结构越"团簇"辛醇-水分配系数越大。多环芳烃化学性质稳定.当它们发生反应时,趋向保留它们的共扼环状系,一般多通过亲电取代反应形成衍生物并代谢为最终致癌物的活泼形式。

多环芳烃广泛存在于人类生活的自然环境如大气、水体、土壤、作物和食品中。环境中存在的 PAHs 人为来源包括: (1) 废物焚烧和化工燃料不完全燃烧产生的烟气(包括汽车尾气); (2) 工厂(特别是炼焦、炼油、煤气厂)排出物。(3) 水体中的 PAHs 主要来源于工业废水、大气降落物、表面敷沥青道路的径流及污染土壤的沥滤流。与地下水、湖水相比,河水更易受污染,其中多被吸附在悬浮粒子上,仅少量呈溶解态。(4)室内 PAHs 则来源于取暖、烹饪以及吸烟等,由含碳氢化合物不完全燃烧产生。

常见的具有致癌作用的多环芳烃多为四到六环的稠环化合物。国际癌症研究中心 (IARC)(1976 年)列出的 94 种对实验动物致癌的化合物,其中 15 种属于多环芳烃,由于苯并(α)芘是第一个被发现的环境化学致癌物,而且致癌性很强,故常以苯并(α)芘作为多环芳的代表,它占全部致癌性多环芳烃 1%-20%。常见的 16 种多环芳烃化合物的基本理化性质和毒性分级见表。

表 3.1-3 多环芳烃的性质和毒性一览表

污染物	理化性质	毒性分析
萘	白色易挥发晶体,有芳香气味,	具刺激作用,高浓度致溶血性贫
	熔点 80.1℃,沸点 217.9℃,蒸	血及肝、肾损害。
	汽压 0.13kPa/52.6℃	
苊烯	白色或略带黄色斜方针状晶体,	/
	熔点 92.3℃,沸点 265℃。	
苊	白色针状结晶,熔点95℃,沸	对眼睛、皮肤、粘膜和上呼吸道
	点 277.5℃,蒸汽压	有刺激性。
	1.33kPa(131.2℃) ,相对密度(水	
	=1)1.02(20°C);	
芴	白色小片状晶体,熔点 118℃,	/
	沸点 295℃	
菲	蔥的异构体, 无色有荧光的晶	可引起致敏作用,未见职业中毒
	体,熔点100~101℃,沸点	的报道。
	340℃	
蒽	浅黄色针状结晶,有蓝色萤光,	对皮肤、粘膜有刺激性,易引起
	熔点 17℃,沸点 345℃	光感性皮炎。
荧蒽	黄绿色结晶或无色固体,熔点	具腐蚀性,资料报道有致突变作
	109~110℃,沸点 367℃	用。
芘	无色、棱形晶体,沸点 393.5℃,	未见急性中毒报道。长期接触
	熔点 150℃,相对密度(水=1)1.27	3~5mg/m3 可见头痛、乏力、
		睡眠不佳、易兴奋、食欲减退、
		白细胞增加,血沉增速等。
苯并(a)蒽	黄棕色有萤光的片状物质,沸点	/
	435℃,熔点 162℃	
屈	白色或带银灰色、黄绿色鳞片状	/
	或平斜方八面结晶体,熔点	
	255℃,沸点 440.7℃	
苯并 (b) 荧蒽	熔点 167℃,不溶于水	/
苯并(k)荧蒽	晶体,熔点 217℃,沸点 480℃	/
苯并(a) 芘	无色至淡黄色、针状、晶体,熔	对眼、皮肤有刺激作用,是致癌
	点 179℃,沸点 475℃	物、致畸原及诱变剂。
茚并(1,2,3-cd)芘	黄色片状或针状结晶,有淡绿色	/
	荧光;蒸汽压;熔点 162.5~	
	164℃	
二苯并(a, h)蒽	/	/
苯并(g,h,i)芘	苯中析出叶状晶体,呈鲜艳黄绿	/
	色荧光	

4. 石油烃毒性分析

石油及其制品与人类的生活密不可分,随着大量的石油开采、加工、运输和使用等活动,形成了各种各样的石油烃污染场地。石油烃污染以工业发达国家和石油生产国最为严重,如美国约45 万块棕色土地中,大约有一半存在石油污染;石油烃污染是加拿大分布最为广泛的土壤污染问题之一,60%的污染场地存在石油烃污染。石油烃污染因其严重的环境危害而备受关注,其中很多有毒组分对人体健康和环境具有直接或潜在的威胁。轻质烃(低分子量烃)迁移性强,可以从土壤长距离迁移进入地下水;大分子量和支链烃持久性强,进入环境很难降解。此外,石油烃还可引起恶臭和视觉污染,导致土壤质量下降,影响土壤持水、养分运移和植物生长等。石油烃一旦进入环境,则很难清理整治。

石油烃类化合物可以分为4 类:饱和烃、芳香族烃类化合物、沥青质(苯酚类、脂肪酸类、酮类、酯类、扑啉类)、树脂(吡啶类、喹啉类、卡巴胂类、亚砜类和酰胺类)石油烃在环境中以复杂的混合物形式存在,因石油源、土壤特性、水文地质条件、加工程度(原油、混合或炼制)、老化程度等不同,成分和性质差异很大。

5. 二甲苯毒性分析

二甲苯(dimethylbenzene)为无色透明液体,有芳香烃的特殊气味。系由45%~70%的间二甲苯、15%~25%的对二甲苯和10%~15%邻二甲苯三种异构体所组成的混合物。易流动。能与无水乙醇、乙醚和其他许多有机溶剂混溶二甲苯具刺激性气味、易燃,与乙醇、氯仿或乙醚能任意混合,在水中不溶。沸点为137~140℃。二甲苯属于低毒类化学物质,美国政府工业卫生学家会议(ACGIH)将其归类为A4级,即缺乏对人体、动物致癌性证据的物质。广泛用于涂料、树脂、染料、油墨等行业做溶剂。

误食入二甲苯溶剂时,即强烈刺激食道和胃,并引起呕吐,还可能引起血性肺炎,应立即饮入液体石蜡,立即送医诊治。二甲苯蒸气对小鼠的LC为6000*10-6,大鼠经口最低致死量4000mg/kg。

一般甲苯、二甲苯空气浓度200~300 mg/立方米吸入8h即可产生轻度中毒症状, 3.76g/立方米浓度吸入1h即发生急性中毒,二甲苯对眼及上呼吸道有刺激作用,高浓度 时,对中枢系统有麻醉作用。急性中毒:短期内吸入较高浓度本品可出现作。慢性影响: 长期接触有神经衰弱综合症,女性有可能导致月经异常。皮肤接触常发生皮肤干燥、皲裂、皮炎。

3.1.3 污染物排查结果

通过以上分析可知, 商务车分公司厂区存在的潜在污染物包括:

- (1) 冲压过程产生废金属屑(主要成分铁、铝)、清洗废水等污染物质,废金属屑沉降、清洗废水泄漏等可能产生污染,进而对车间及周边环境造成一定的影响;
- (2) 焊装过程产生金属粉尘(主要成分铁、铝)、废油等污染物质,废金属屑飘落、 沉降,废油泄漏等可能产生金属、环烷烃、芳烃、石油烃等污染,进而对车间及周边环 境造成一定的影响;
- (3)涂装过程产生的污染物有各种废漆、磷化废液、电泳废液、清洗废水等污染物质。主要污染因子有重金属(镍、锌)、有机废气漆雾、二甲苯等。
- (4)总装过程产生的污染物主要有补漆室产生的少量的含二甲苯有机废气,淋雨试验定期排放的废水,同时还有废油(机油和柴油)等,如对这些物质处置不当,可能会对土壤及地下水造成污染。
- (5)油库主要储存汽油和柴油,采用地下储罐的形式,汽油、柴油中含有对人体和环境强有害的物质环烷烃、芳香烃、石油烃,使用期间可能有跑冒滴漏情况,从而造成土壤和地下水污染。
- (6)污水站处理的废水主要包括含镍、锌废水、生活污水、清洗废水等,主要涉及的污染物有石油类等。污水站如出现设备故障或是超负荷处理的情况下可能会对土壤及地下水造成危害。
- (7) 危废站主要临时堆放处置各生产环节产生的危废。主要包括废漆桶、废化学试剂、废漆渣、磷化渣以及含油漆废物(漆皮、毛刷、纸盒)、油泥等等。在这些废弃物转移、堆放、处置过程如有不当可能会产生重金属(铅、砷、镍)、环烷烃、石油烃、芳香烃、二甲苯等污染物质对土壤及地下水产生污染。
 - (8) 原煤堆场主要堆放煤矿石等燃料,可能产生的污染有重金属砷、铅。
- (9) 厂区生产配套实施主要包括办公区、零部件存储区、停车场、变电站、锅炉房等,生产配套区域的生活垃圾、生活污水等可能会对厂区内土壤及地下水产生污染。

3.2 重点设施设备及活动排查

3.2.1 厂区生产加工装置排查

安徽江淮汽车集团股份有限公司商务车分公司生产过程中使用的加工装置均位于

封闭的厂区建筑中,防雨、防渗设施较好。在日常运行管理过程中,对存在的环境风险 装置及设备制定了防范及监控措施,因此,安徽江淮汽车集团股份有限公司商务车分公 司在生产过程中土壤污染的可能性极低。排查结果如表 3.2-1 所示:

表 3.2-1 厂区生产加工装置排查结果

环境风险	存在部门及 工艺	防范措施	监控方式	土壤污染隐患
调漆间	涂装车间	车间设有泄漏收集槽沟;若 出现泄漏时进入地面沟槽随 即进入污水处理站	巡视点检	低
化学品临时堆放点	涂装车间	设有托盘,车间设有泄漏收集槽沟;若出现泄漏时进入地面沟槽随即进入重金属污水处理设施 巡视点检		低
从	冲焊车间	少量存放,现场设有吸附棉		
	总装车间	等应急物资,发生泄漏时采 用吸附棉进行吸附处理		
生产性污水排放 管道破损、泄漏, 污水泄漏、溢出	各机加工车 间排污管道	日常寻查点检 设置流量计计量监控。	巡视点检	低
污水排放口水质 突然超标,或污水 处理设施不能正 常运行	污水处理站	污水处理规范操作 每日化验,达标排放。 设备日常点检,确保正常运行。 安装污染源在线监测设备 厂区设有消防事故水池 (800m3),雨水排口(位于 厂区北侧)设有截止阀	总排口水质每日 化验	低
污水管堵塞、破 损,污水泄漏、溢 出	公司污水管 网	定期清理污水管、化粪池 雨水排口增加应急预防措施,事故状态下废水杜绝流 入厂区外雨水管网	责任明确、雨水 管网每周自行检 测	低
废气超标排放	涂装车间中 涂、面漆喷 漆室 涂装车间调 漆间	废气排放设施正常运行 设备日常点检	烟感、可燃气体 报警器	

	涂装车间烘 干室 总装车间 涂装车间中 涂、面漆喷 漆室			低
液态危废泼洒、泄漏	危废收集、 贮存、转运 作业	分类存放,设有围堰,设有 防腐防渗漏措施,设有泄漏 收集槽沟;若出现泄漏时进 入地面沟槽随即进入污水处 理站	转运审核 巡视点检	低
油库发生泄漏	油库	建立层级巡查机制,定时点检。 现场配备必要的盛漏器具和沙土,以及其它防泄漏应急物资。	设有液位监测装 置和静电报警系 统	低

3.2.2 液体存储排查

(1) 散装液体存储

安徽江淮汽车集团股份有限公司商务车分公司无地表储罐、离地的悬挂储罐、水坑或渗坑(景观池除外),厂区范围内有地下石油储罐一处,2个7m³埋地卧式罐,总占地面积约100m2,设有围堰;取油口设有围堰,内覆盖消防沙;设有液位监测装置和静电报警系统。石油储存在不渗漏容器中、带有液位报警器的储罐,产生土壤污染的可能性较低。在进油口、出油口等部位发生的渗漏容易造成土壤污染,此次现场排查未发现渗漏情况。

现场设有石油储罐泄漏处置材料,一旦泄露将检查泄漏部位,进行堵漏,同时关闭厂区雨水排口阀门,地面用纱头、消防沙吸附,作为危废处置;若泄漏进入雨水管网,则将雨水管网内泄漏物进行收集,泵送入污水处理站进行处理。现场排查图片如下:

图 3.2-1 地下石油储罐区

图 3.2-2 加油口



图 3.2-3 出油管路

表 3.2-3 储罐设计及运行管理措施

储罐施工设计		储罐的日常运行管理				
施工/设计	重点	特殊运行维护	土壤污染可能性			
地下储罐	进料口、出料	有	有	完善	低	
	口、基槽					

(2) 散装液体的运输及内部转运设施设备

1) 进行装车与卸货活动的平台

安徽江淮汽车集团股份有限公司商务车分公司没有专门进行装车、卸货的平台,但 装车卸货活动均在特定区域或者厂房内。卸货区域均由防雨顶棚,周边设置防渗漏设施,污染周边土壤的可能性较低。

2) 内部转运

安徽江淮汽车集团股份有限公司商务车分公司生产过程中设计到的液体主要是磷 化液和油漆,在转运过程中贮存在密封性良好的钢塑复合桶中,且生产厂房内地面为防 渗地面,正常情况下对土壤污染影响较低。若在开口中出现跑冒滴漏可能会对土壤造成一定的污染,但是由于地面是防渗地面,风险较低。

3.2.2 散装和包装货物的存储与运输

(1) 散装和包装货物存储与运输

安徽江淮汽车集团股份有限公司商务车分公司设有零部件存储区,其中零部件存储

区分别位于每个生产车间,用于存放各组件、零部件等;货物在车间中都有固定存放点,并有专业人员进行管理。

安徽江淮汽车集团股份有限公司商务车分公司货物转运也是在厂房外固定区域进行。

图 3.2-4 厂区货物存储、转运

2)固态化学物品包装存储的设施设备 安徽江淮汽车集团股份有限公司商务车分公司生产过程中不涉及固态化学物品。

3)液体物品包装的储存

安徽江淮汽车集团股份有限公司商务车分公司生产过程中使用的液体化学品主要是油漆及磷化液,储存在封性良好的钢塑复合桶中,存储于车间中。日常运行过程中,有定期的监测和完善的事故管理措施(表 3.2-4)。土壤及地下水造成影响可能性小。

图 3.2-5 涂装车间调漆间

图 3.2-6 涂装车间内导流沟

表 3.2-4 液体物品包装储存设计及运行管理措施

液体存储施工设计			储罐的日常运行管理		
密封防渗 防雨防渗 包装满足运输要求		防渗下垫面	定期监测		
有	有	满足	有	有	

3.2.3 管线

通过现场踏勘、资料收集和人员的访谈,厂区范围内主要管道为雨水、污水和燃气管路,其中雨水和污水管路走向和分布见附件 4。厂区雨污分流,雨水排口设有截留、关闭设施。涂装废水排入重金属污水处理设施处理达标后和厂区其他废水排入污水处理站,处理达标后排入经开区污水处理厂进行处理。由于地下管路无法现场排查,污水管道的泄露将直接污染周边土壤和地下水,因此污水管道,尤其对于管道阀门、法兰等位

置是重点的土壤环境监测对象。

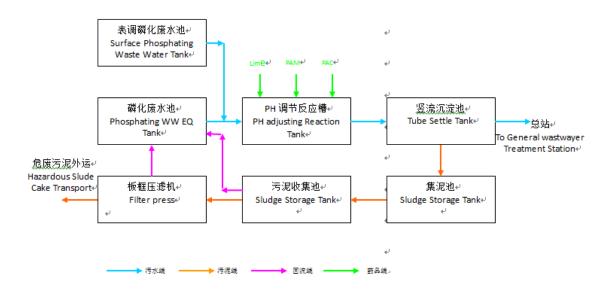
3.2.4 其他活动

(1) 废水

厂区设有一个雨水总排口,位于厂区北侧,收纳河流为派河。收纳河流的最大流速经查证为: 25cm/s(参考资料:《派河上派镇段水质评价及污染防治对策》),24 小时流经范围最远达:巢湖。

厂区共设有一个雨水总排口,并设有闸阀,位于厂区应急事故池一侧,该雨水总排口闸阀是针对商务车分公司内的雨水管网雨水排放所设置的阀门。根据江淮汽车工业园区内的地势分析,商务车分公司是位于整个汽车工业园区排水的上游(地势高处),因此江淮汽车工业园区在下游部分(地势低处)另设置一个雨水排口,并设有闸阀,确保事故状态下的废水不进入外环境。厂区雨水通过雨水管道排入江淮汽车工业园区内的雨水管网后排入市政雨水管网,最后排入派河。厂区污水通过厂区污水管道排入污水处理站进行处理,达标后排入经开区污水处理厂进行处理,达标后排入派河。

厂区的应急事故池是根据原有的煤渣池进行改造而来,共计三个池体,800m3,该应急事故池只收集江淮汽车工业园区内商务车分公司火灾、爆炸伴生环境事件下的消防废水。


图 3.2-7 安徽江淮汽车集团股份有限公司商务车分公司重金属污水处理站

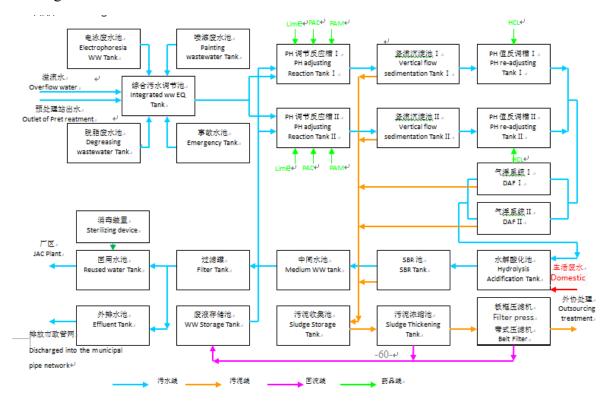


图 3.2-8 安徽江淮汽车集团股份有限公司商务车分公司污水处理站

安徽江淮汽车集团股份有限公司商务车分公司重金属污水处理站,位于桃花工业区内,设计处理能力: 30 m³/h.主要用于桃花工业园区商务车公司涂装车间磷化工序及磷化后水洗含一类污染物重金属(镍)工业废水的集中处理。出水水质标准执行GB8978-1996《污水综合排放标准》中第一类污染物的最高允许排放浓度: Ni≤1.0mg/l。出水进入综合调节池后进入总站进一步处理。

安徽江淮汽车集团股份有限公司商务车分公司污水处理站始建于 1999 年,采用物化+生化处理工艺。承接商务车公司涂装废水、生产溢流水、生活水及预处理后的废水处理工作。设计日处理量为 1200m ³。厂区污水处理站出水排入市政污水管网后,进入合肥经济技术开发区污水处理厂进行深度处理。污染物排放执行《污水排入城镇下水道水质标准》GB/T 31962-2015 中 B 级标准。厂区污水处理总站污水排放指标(经开区污水处理厂接管标准)为: 6≤PH≤9、COD_{Cr}≤330mg/l、SS≤200 mg/l、NH3-N≤20mg/l、磷酸盐≤3.5 mg/l。

(2) 危废

安徽江淮汽车集团股份有限公司商务车分公司主要危险废物产生及排放情况以及储存处置措施见下表所示。

表 3.2-5 企业危险废物产生以及处置措施一览表

序号	种类	类别及代码	产生量(t/a)	储存处置措施	排放 量(t/a)
1	废漆渣	危险废物 HW12	75		0
2	磷化渣	危险废物 HW17	30		0
3	废有机溶剂	危险废物 HW42	25		0
4	废混合液	危险废物 HW49	3		0
5	含油漆废物(漆皮、毛刷、 纸盒)	危险废物 HW49	9		0
6	废胶沾染物	危险废物 HW36	10		0
7	废胶	危险废物 HW13	3		0
8	保温棉、过滤棉	危险废物 HW36	2.5		0
9	油棉纱头、手套、塑料皮	危险废物 HW49	14	储存在厂区危废	0
10	废硒鼓、墨盒、色带等	危险废物 HW49	0.5	仓库内,委托安徽	0
11	废日光灯管	危险废物 HW29	0.24	浩悦环境科技有 限公司进行处理	0
12	废油漆	危险废物 HW12	3	,,,,,,,,,	0
13	报废化学试剂	危险废物 HW49	0.05		0
14	废旧电池	危险废物 HW49	0.5		0
15	油泥	危险废物 HW49	2		0
16	含油过滤器	危险废物 HW49	0.5		0
17	含油吸附剂	危险废物 HW49	0.2		
18	含油沙	危险废物 HW49	0.5		
19	涂料桶	危险废物 HW49	4000 (只)	储存在厂区危废 库(空桶)中,定	0
20	非涂料桶	危险废物 HW49	1000(只)	期送安徽嘉朋特 环保科技服务有 限公司进行处置	0

3.3 土壤隐患排查结论

通过土壤隐患排查,得出以下排查结论:

- (1) 安徽江淮汽车集团股份有限公司商务车分公司厂区内自建厂以来存在的污染土壤及地下水的潜在污染因子有重金属(铅、汞、铬、镉、镍、锌)、环烷烃、芳香烃、石油烃、二甲苯、NH3—N等。
- (2)) 安徽江淮汽车集团股份有限公司商务车分公司生产加工装置都设置在密闭车间内,且运行维护措施完善,造成土壤污染的风险低。
- (3) 安徽江淮汽车集团股份有限公司商务车分公司的地下储罐分别是汽油、柴油储罐,所有储罐均下均设置安放于防渗槽中,地表储罐其设计建设和日常管理使其在存储期间污染周边土壤的可能性较低。地下储罐也有完善的日常管理和应急措施,设有液位监测装置和静电报警系统,造成土壤污染的风险低。
- (4) 安徽江淮汽车集团股份有限公司商务车分公司内货物主要贮存在生产车间中固定区域,转移及转运也有专门区域。液体化学品均贮存于密封性良好的钢塑复合桶中,并存储于防雨、防渗的车间中,有完善的管理措施,对土壤及地下水造成影响可能性小。
- (5)安徽江淮汽车集团股份有限公司商务车分公司污水处理站有完善的运营管理措施,污水收集、处理与排放设施的设计较完善,并设有应急事故池和相应应急措施,如发生泄漏等事故能及时处理,造成土壤及地下水造成影响可能性小。
- (6) 安徽江淮汽车集团股份有限公司商务车分公司危废站根据固废种类分类堆放, 有明确去向, 地面有防渗处理, 造成土壤及地下水造成影响可能性小。

4.土壤环境监测

4.1 潜在污染区域分析

公司占地范围内所有生产活动区域都可能为潜在的污染区域,根据前期排查结果,整个厂区内的土壤污染风险较低,为了更详细的了解厂区土壤环境状况,需进行布点监测。根据厂区内重点物质和重点设施设备分布情况,本次土壤环境监测布点的重点区域有:污水处理设施区、涂装车间(包括危废存放区)、总装车间(包括供油站)、变电所、锅炉房(原煤堆场),其他区域也应适当布点进行监测。

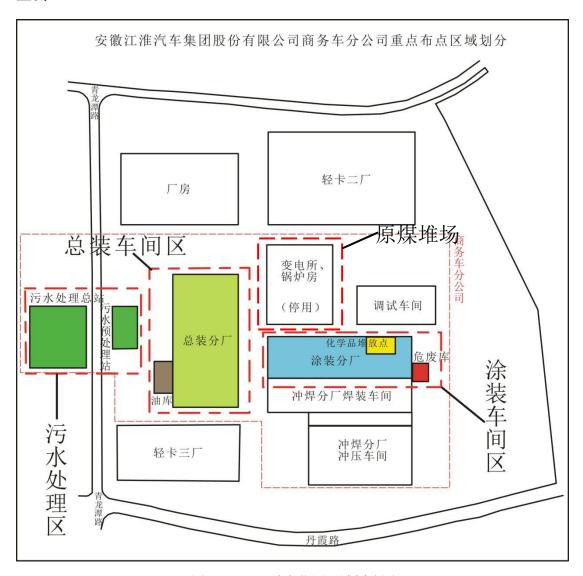


图 4.1-1 厂区重点监测区域划分图

4.2 调查监测

4.2.1 调查监测布点方案

根据《重点行业企业用地调查疑似污染地块布点技术规定》(试行)等相关技术规定,原则上每个企业至少应筛选出 2 个以上潜在污染区域进行布点,每个布点区域原则上至少设置 2 个土壤采样点,可根据布点区域大小、污染物分布等实际情况进行适当调整。根据《在产企业土壤和地下水自行监测指南》规定,在产企业监测点位布设参照 HJ 25.1 中对于专业判断布点法的要求开展土壤一般监测工作,同时遵循以下原则:每个重点设施周边布设 1-2 个土壤监测点,每个重点区域布设 2-3 个土壤监测点,具体数量可根据设施大小或区域内设施数量等实际情况进行适当调整。

监测点位布设过程中严格遵守在污染源附近布点,考虑到本厂区是在产企业,在不影响企业生产情况下,布设点位尽可能接近疑似污染源,同时避开地下管线,且在两个污染源位置相近时可合用一个监测点。

本次调查监测布设土壤监测点 11 个(S表示),分别在污水总站、污水预处理站、油库北侧、总装北侧、总装东侧、原有煤堆场、涂装车间北侧、危险品库、轻卡二厂东侧,一个对照点设在相对扰动较小的位置。

地下水监测井布设要符合厂区内地下水流方向,同时保证每个重点监测区域都有监测井。本次共布设监测井 5 口(W表示)。

土壤及地下水监测点点位信息及监测项目见表 4.2-1,点位布设图见图 4.2-1、4.2-2。

序号	检测点位	监测因子	点位数	功能	备注
W5	轻卡三厂西南 侧	pH, 氨氮, 氰化物, 氟化物, 硫酸盐, 硝酸盐,	1个	参照点	新建井
W1	污水总站	耗氧量,	1 个	监控点	预留井
W2	污水预处理站	亚硝酸盐,铜,锌,铅,	1 个	监控点	预留井
W3	总装东侧	汞,砷,铬(六价),	1 个	监控点	预留井
W4	调试车间北	镉,镍,挥发性有机物 (VOCs)	1个	监控点	预留井

表 4.2-1 地下水监测点信息表

表 4.2-2 土壤监测点信息表

编号	监测位置	经度	纬度	监测因子	点位数	功能	采样深度	
S1	轻卡三厂南侧	117 °12′57.09″	31 46′14.08″	- 建设用地土壤 - 质量标准 45 项 - 基本项+锌、 - pH,油库、污 - 水处理站加测 - 石油烃	1 个	监控点	表层	
S2	污水总站	117 °13′00.40″	31°46′22.46″		1 个	监控点	表、中、底(50cm、1m、3m)	
S3	污水预处理站	117°13′05.23″	31°46′22.33″		** \	1 个	监控点	表、中、底(50cm、1m、3m)
S4	油库北侧	117 °13′02.03″	31°46′20.05″		1 个	监控点	表、中、底(50cm、1m、3m)	
S5	总装西侧	117 °13′06.67″	31°46′23.15″		1 个	监控点	表、中、底(50cm、1m、3m)	
S6	总装东侧	117 °13′10.96″	31°46′19.03″		1 个	监控点	表、中、底(50cm、1m、3m)	
S7	原有煤堆场	117 °13′13.85″	31°46′17.68″		1 个	监控点	表、中、底(50cm、1m、3m)	
S8	涂装车间北侧	117 °13′11.39″	31°46′16.12″		1 个	监控点	表、中、底(50cm、1m、3m)	
S9	涂装车间北侧	117°13′14.38″	31°46′14.12″		1 个	监控点	表、中、底(50cm、1m、3m)	
S10	危险品库	117 °13′17.71″	31°46′11.26″		1 个	监控点	表、中、底(50cm、1m、3m)	
S11	轻卡二厂东侧	117 °13′23.34″	31°46′16.68″		1 个	对照点	表、中、底(50cm、1m、3m)	

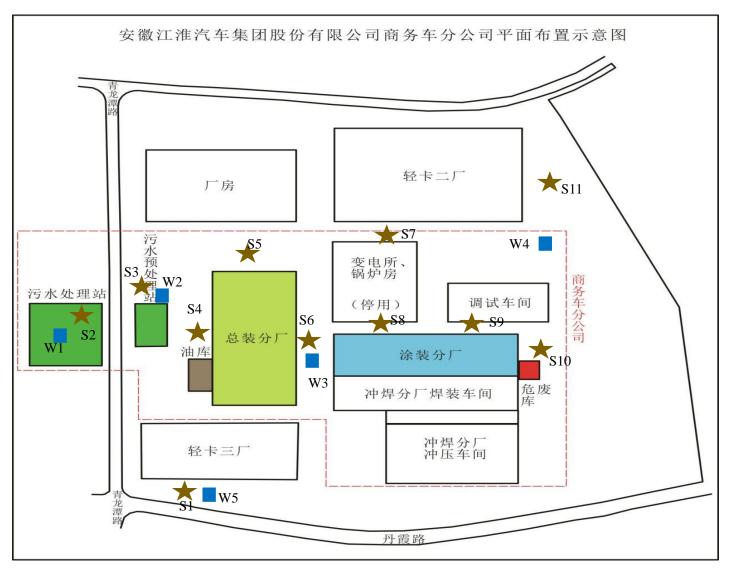


图 4.2-1 土壤及地下水点位布设图

图 4.2-2 采样点卫星定位图

4.2.2 样品采集和保存

1.组织准备

选择具有一定野外调查经验、熟悉土壤采样技术规程、工作负责的专业人员组成采样组。采样组由 4 名成员组成,背景包括农业类,环境类,水文地质类,化学。采样组全部成员做到调查工作内容熟知,相关技术及工作方法熟练准确。

2. 物资准备

现场采样准备的材料和设备包括:定位仪器、现场探测设备、调查信息记录装备、监测井的建井材料、土壤和地下水取样设备、样品的保存装置和安全防护设备等。

根据分析项目准备相关物品,包括采样工具、器材、文具及安全防护用品等, 具体如下:

- (1) 具类:铁铲、洛阳铲、贝勒管等。
- (2)器材类:汽车钻机 GPS 定位仪、PID、XRF、便携式 pH 计、水位计、管剪、数码相机、卷尺、样品袋、棕色玻璃瓶、保温箱等和化学试剂。
 - (3) 文具类: 样品标签、记录表格、文具夹、中性笔等小型用品。
- (4) 安全防护用品: 手套、工作服、雨衣、雨靴、安全帽、防砸鞋、常用 药品等。

现场快速检测设备: 美国 Olympus 公司便携式重金属分析仪(Innox-X DPO4050); 挥发性毒性气体快速监测仪器 (PID/FID 现场快速监测)(美国华瑞 ppbRAE3000 PGM-7340)。

XRF 手持式快速检测仪

PID

3. 土壤样品采集与保存

土壤采集深度和采样时间及频率如下:

1) 采样流程

土壤采样的实施流程如下:

现场实地踏勘→点位布设→设备转场运输→就位准备→钻孔→取样→分装 →贴标签。

采用专用汽车钻机进行钻孔采样,采集的样品按照不同深度以及样品分装要求进行装袋。

2) 采样深度

厂区地下水勘查中,本厂区地下水埋深在 1m-3m 之间,且 2018 年对本场地土壤环境监测中,本场地 6m 深度内无污染,因此本次土壤钻井深度设为 3m 深井。

根据"关于征求《场地环境调查技术导则》(HJ 25.1-2014)等 5 项国家环境保护标准修改单(征求意见稿)意见的函"环办标征函[2018]63 号中提到的"在每个工作单元,土壤垂直方向层次的划分应综合考虑污染物迁移情况、构筑物及管线破损情况、土壤特征等因素确定。采样深度应扣除地表非土壤硬化层厚度,原则上应采集 0-0.5m 表层样品,0.5cm 以下的深层样品根据判断布点法采集,建议0.5m-6m 土壤间隔不超过 2m"。因此本次采用分层采样,按照 0-0.5m(表层)、0.5-1m、1-2m、2-3m 间隔取样,取样部位分别是 0-0.5m、0.5~1m、1.5-2m、2.5~3m 处采集土壤样品,。每个点位进行 PID 和 XRF 读数辅助判断,如果最深处的土样PID 和 XRF 读数异常偏大,则加深采样。样品采集后根据不同污染物的检测要求装瓶送实验室检测。

3) 采样时间

采样时间为 2019 年 5 月 20 日。

4) 土壤样品保存

土壤样品装样过程中,尽量减少土壤样品在空气中的暴露时间,且尽量将容器装满(消除样品顶空)。

土壤样品采集完成后,在样品上标明编号等采样信息,并做好现场记录。所有样品采集后及时放入装有冷冻蓝冰的低温保温箱中,并及时送至实验室分析。

在样品运送过程中确保保温箱能满足样品对低温的要求。

采样的同时进行现场记录,包含了样品名称和编号、气象条件、采样时间、 采样位置、采样深度、样品质地、样品颜色和气味、相关采样人员等。见附表。 专业钻机采集的土壤样品,注明样品编号、采样日期、采样人等信息。

根据检测项目,对所有土壤样品进行分类保存。检测重金属的土壤样品可直接保存在取样管中,但是需要按上述密封保存。检测挥发性有机物的土壤样品保存在含有甲醇溶剂的棕色玻璃瓶中。所有样品现场均使用冰袋冷藏,并及时送回实验室冷冻保存和检测。

- 4. 地下水样品采集与保存
- 1) 地下水位监测孔施工流程如下:

此次地下水取样拟用专用汽车钻机,采用空心钻杆螺纹钻方法钻井,建简 易井管取水样。具体流程如下:

现场实地踏勘→施工前测量放点→设备转场运输→就位准备→钻孔→测量 孔深→安装监测井管→投料及回填灌浆→孔口保护墩浇注及保护罩安装→编号 喷涂。

1. 现场实地踏勘

使用测量设备对设计图纸中的地下水位监测孔位置进行实地踏勘,观察各相关地下水位监测孔是否位于不便于施工的位置,对于不便施工的地下水位监测孔位置进行调整和处理。

2. 施工前测量放点

完成现场实地踏勘后,采用工程联系单的方式将踏勘、调整后的地下水位监测孔位置上报。待业主、监理、设计批复认可后,将在进行地下水位监测孔位置放点,为接下来的施工提供点位位置。

3. 设备转场运输

将机械设备转移至相应点位,并做好准备工作。

4. 钻孔。

待准备完毕后,即可进行钻孔工作,钻进至设计孔底高程为止。开孔钻进必 须加强护孔和防斜措施,放置孔口他先和确保钻孔垂直。在松散覆盖层钻孔过程 中,需采取措施处理覆盖层坍孔的问题。

5. 测量孔深

使用钻机测量孔深。测深时由监理现场签认钻孔深度。

6. 安装监测并管 用钻机将配好的监测井管下入钻孔中。下管时由监理现场 签认井管长度。

7. 投料及回填灌浆

监测井管安装完毕后,即可在钻孔及钢管之间的缝隙中投入石英砂和膨润土,最后用水泥砂浆将缝隙灌满抹平。

8. 孔口保护墩浇注及保护罩安装

按照设计图纸在地下水位监测孔孔口立模浇注孔口保护墩,并安装孔口保护罩。

9. 编号喷涂

待孔口保护墩终凝后, 在保护墩上喷涂地下水位监测孔编号。

10. 洗井

本次洗井采用井柱水体置换法。首先计算出井水体积,其中,直径 50mm 监测井井水体积(L)=2.0*井水深度(m);直径 100mm 监测井井水体积(L)=8.1*井水深度(m),然后以 3-5 倍井水体积洗井,洗井时可用贝勒管或抽水泵,建议使用抽水泵节省时间,洗井抽水速率宜小于 2.5L/min,以适当流速抽出 3-5 倍井水体积,大致可将井柱水置换,抽出水约 1-1.5 倍井体积时,测定第一次水质参数,然后每 0.5 倍井体积测量一次,洗井过程中至少测量五次以上,知道最后三次的参数偏差符合稳定条件。当参数稳定后,洗井结束。

值得注意的是,在洗井过程中,抽水速率不应造成浊度增加,气提作用及曝气现象。洗井时,抽出的水确定有污染可能时,不可任意弃置或与其他液体混合,需将抽出的水置于容器中,并等水样检测结果后,决定处理方式。洗井过程也尽量避免大幅度降低井内水位。

表 4.2-3 洗井稳定标准

水质参数	稳定标准
рН	±0.1
电导率	±3%
溶氧	符合±10%或±0.3mg/L其中之 —
氧化还原电位	±10mV

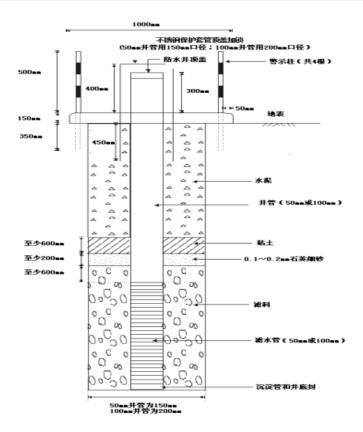


图 4.2-3 管单层环境监测井结构

2) 采样深度

根据《地下水环境监测技术导规范》(HJ 164-2004)规定,地下水监测井监测井根据含水层埋深和厚度确定,并尽可能超过已知地下水埋深的 2m。采集水面下 0.5m 一个样品。本次地下水监测井设定深度的为 6m,根据不同污染物的检测要求装瓶送实验室检测。

3) 采样时间

采样时间为 2019 年 5 月 21 日-2019 年 5 月 22 日。

4) 地下水样品保存

所有现场采集的水样样品经分类、整理、造册后包装后,于当天发往检测单 位。样品的流转过程均用保温箱保存,保温箱内置足量冰盒,以保证样品对低温 的要求,运输并在保存时限内运至试验室。样品运送到实验室放在冷藏箱贮存。

图 4.3-4 水质样品运输保温箱与蓝冰

4.2.3 监测工作量统计

本次共计布设 11 个土壤点位,每个取样点深度均为 3m,每个深层点位采集 4个土壤样品,共计45份土壤样品(包括4个平行样)。

地下水监测井5口,每个监测井采集1个水样,同时补加1个平行样(10%), 总计6个样品。

		表 4.2-4 土壤及地卜水样品米集丄程量
	点位数	样品数
	11	45
	5	6
		表 4.2-5 现场调查工程量
序号	工程	工程量
1	土壤采样	11 个点位,共计 45 份土壤样品(包括4个平行样)
2	地下水成井	及采样 成井 5 口,井深 6m,采集 5 个地下

水样品,1个平行样品

4.2.4 样品检测

1. 检测项目及方法

本项目土壤和地下水检测项目根据前文 2.2 所述企业产品种类、生产工艺以 及污染排放及处理等情况以及第三章排查得出的本厂区内土壤潜在的污染物有 重金属(铅、砷、镍、锌)、pH、饱和环烷烃、芳香烃、石油烃、二甲苯等,地 下水水中潜在污染物为 NH₃—N、重金属(镍、锌)、石油类等,同时参照《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)、及《地下水质量标准》(GB/T 14848-2017)等技术规定,本项目土壤和地下水检测项目及分析方法如表 4.2-6、4.2-7 所示。

表 4.2-6 土壤中各检测指标

类别	序号	分析指标	检测方法
理化性质	1	рН	土壤 pH 测定 NY/T1121.2-2006
	2	th () 1 \ \	土壤中六价铬的测定 EPA3060A:
	2	铬 (六价)	1996 和 EPA7196A:1992
		/ELC	土壤质量铜、锌测定火焰原子吸收分
	3	铜(Cu)	光光度法 GB/T17138-1997
	4	铅(Pb)	土壤质量铅、镉测定石墨炉原子吸收
	5	镉(Cd)	分光光度法 GB/T17141-1997
重金属		竹口	土壤质量镍测定火焰原子吸收分光
里金偶	6	镍(Ni)	光度法 GB/T17139-1997
	7		土壤质量总汞、总砷、总铅测定原子
		砷(As)	荧光法第2部分:土壤总砷测定
			GB/T22105.2-2008
	8		土壤质量总汞、总砷、总铅测定原子
		汞(Hg)	荧光法第1部分:土壤总汞测定
			GB/T22105.2-2008
	9	四氯化碳	
	10	氯仿	
	11	氯甲烷	
挥发性有机物	12	1,1-二氯乙烷	
1年及1年701初	13	1,2-二氯乙烷	土壤和沉积物中挥发性有机物测定
	14	1,1-二氯乙烯	吹扫捕集/气相色谱-质谱法
	15	顺-1,2-二氯乙烯	НЈ605-2011
	16	反-1,2-二氯乙烯	

	17	二氯甲烷	
	18	1,2-二氯丙烷	
	19	1,1,1,2-四氯乙烷	
	20	1,1,2,2-四氯乙烷	
	21	四氯乙烯	
	22	1,1,1-三氯乙烷	
	23	1,1,2-三氯乙烷	
	24	三氯乙烯	
	25	1,2,3-三氯丙烷	
	26	氯乙烯	
	27	苯	
	28	氯苯	
	29	1,2-二氯苯	
	30	1,4-二氯苯	
	31	乙苯	
	32	苯乙烯	
	33	甲苯	
	34	间二甲苯+对二甲苯	
	35	邻二甲苯	
	36	硝基苯	
	37	萘	
	38	2-氯酚	
	39	苯并[a]蒽	
半挥发性有机物	40	苯并[a]芘	
十年又任任机物	41	苯并[b]荧蒽	土壤和沉积物中半挥发性有机物测
	42	苯并[k]荧蒽	定吹扫捕集/气相色谱-质谱法
	43	崫	HJ834-2017
	44	苯并[a,h]蒽	
	45	茚并[1,2,3-cd]芘	

	46	苯胺	USEPA8270D 2014	
7.54.12	47	石油烃(C10-C40)	土壤中总石油烃测定气相色谱法/气	
有	石油烃 47		相色谱-质谱法 EPA8015D: 2003	

表 4.2-7 地下水中各检测指标

类别	分析指标	检测方法
<i>大州</i>	23 10111111111	便携式 pH 计法《水和废水监测分析方法》第四
	рН	版增补版(国家环保总局)(2002年)3.1.6.2
		生活饮用水标准检测方法 无机非金属指标
	氨氮	GB/T5750.5-2006
	高锰酸盐指数	水质高锰酸盐指数测定 GB/T11892-1989
一般化学指标		水质无机阴离子(F、Cl、NO ²⁻ 、Br、NO ₂ ³⁻ 、PO ₄ ³⁻ 、
	硫酸盐	SO ₃ ²⁻ 、SO ₄ ²⁻)的测定 离子色谱法 HJ84-2016
	铁 (Fe)	水质 32 种元素的测定 电感耦合等离子 发射光
	铜(Cu)	谱 HJ776-2015
	锌(Zn)	II3//0 2013
	t+(ZII)	ルドエ41四京フ / F CI NO.2 P NO.2.2
	7W TA 4L (1) 1 3 7 2 1 2	水质无机阴离子(F-、Cl-、NO2-、Br-、NO23-、
	硝酸盐(以N计)	PO43-、SO32-、SO42-)的测定 离子色谱法
		HJ84-2016
	亚硝酸盐(以N计)	生活饮用水标准检测方法 无机非金属指标
	氰化物	GB/T5750.5-2006
		水质无机阴离子(F-、Cl-、NO2-、Br-、NO23-、
also also the task	氟化物	PO43-、SO32-、SO42-)的测定 离子色谱法
毒理指标 		HJ84-2016
	六价铬	水质 32 种元素的测定 电感耦合等离子 发射光
	铅(Pb)	谱 HJ776-2015
	镉(Cd)	
	镍(Ni)	
	砷(As)	水质汞、砷、硒、铋和锑的测定 原子荧光法
	汞(Hg)	НЈ694-2014
有机类	挥发性有机物	水质挥发性有机物测定吹扫捕集/气相色谱-质谱 法 HJ639-2012

4.2.4 质量控制及二次污染防范

1.采样过程质量控制

(1) 样品记录

专业人员在现场采样时,填写相应样品的采集记录,对采样点信息、样品信息进行详细描述。见附表。

- 1)装运前核对:采样结束后现场逐项检查,如采样记录表、样品标签等,如有缺项、漏项和错误处,应及时补齐和修正后方可装运。
- 2)样品运输:样品运输过程中严防损失、混淆或沾污,并在样品低温(4℃)暗处冷藏条件下尽快送至实验室分析测试。
- 3)样品交接:样品送到实验室后,采样人员和实验室样品管理员双方同时清点核实样品,并在样品流转单上签字确认,样品流转单一式四份(自复写),由采样人员填写并保存一份,样品管理员保存一份,交分析人员两份,其中一份存留,另一份随数据存档。
- 4)样品管理员接样后及时与分析人员进行交接,双方核实清点样品,核对无误后分析人员在样品流转单上签字,然后进行样品制备。

2.样品交接与运输

装运前核对: 采样结束后现场逐项检查,如采样记录表、样品标签等,如有 缺项、漏项和错误处,应及时补齐和修正后方可装运。

样品运输:样品运输过程中严防损失、混淆或沾污,设置运输空白样,并在 样品低温(4°)暗处冷藏条件下尽快送至实验室分析测试。

样品交接:样品送到实验室后,采样人员和实验室样品管理员双方同时清点 核实样品,并在样品流转单上签字确认,样品流转单一式四份(自复写),由采 样人员填写并保存一份,样品管理员保存一份,交分析人员两份,其中一份存留。

2.制样过程的质量控制

1)制作的工作场

应设风干室、磨样室。房间向阳(严防阳光直射样品),通风、整洁、无扬 尘、无易挥发化学物质。

2)制作的工具和容器

晾干用白搪瓷盘及木盘。磨样用玛瑙研磨机、白色瓷研钵、木滚、木棒、木

锤、有机棒、有机玻璃板、硬质木板、无色聚乙烯薄膜等。过筛用尼龙筛,规格为 2-100 目。分装用具筛磨口玻璃瓶、具塞无色聚乙烯塑料瓶、无色聚乙烯塑料 袋或特制牛皮纸袋,规格视量而定。

每个样品使用的工具和盛样容器编码始终一致。制样所用的工具每处理一次 所用样品后擦洗一次,防止交叉污染。

3) 制样程序

土样交接:采样组填写送样单一式三份,交样品管理员、加工人员各一份, 采样组自存一份,三方核对无误后签字。

湿样晒干: 在风干室将样品倒在有机玻璃板上, 摊成 2-3cm 的薄层, 适时的压碎、翻动、捡出碎石、砂砾、植物残体, 样品的标签与土样随时放在一起, 严禁混淆。

样品粗磨:在磨样室内将风干样品放在有机玻璃板上,用木锤敲打,用木滚、木棒、有机玻璃棒再次压碎,捡出杂质并用四分法分取压碎样,全部过20目筛。过筛后的样品全部置于无色聚乙烯薄膜上,充分混合直至均匀,经粗磨后的样品用四分法分成两份,一份交样品库保存,一份做样品的用。粗磨样可直接用于土壤 pH、阳离子交换量、元素有效态含量的分析。细磨过100目(孔径0.149mm)土样用于土壤全量元素的分析。

样品分装:经研磨混匀后的样品,分装于样品袋或样品瓶。填写标签一式两份,瓶内或袋内放一份,外贴一份。

4) 样品的保存

过筛后的土壤样品经充分混匀,装入具有磨塞的广口瓶、塑料瓶,或装入牛皮纸袋内,容器内外各放标签一张,标签上注明编号、采样地点、土壤名称、土壤深度、筛孔、采样日期、采样者等信息,所有样品处理完毕后登记造册。一般样品一般保留半年至1年,待全部分析工作结束,分析数据核对无误后才能弃用,新鲜样品采集后用可密封的聚乙烯或玻璃容器在4℃以下避光保存,样品要充满容器,避免用含有待测组分或对测试有干扰的材料制成的容器盛装保存样品,测定有机污染物用的土壤样品要选用玻璃容器保存。

测试项目	容器材质	温度(℃)	可保存时间(d)	备注
金属(汞和六价	聚乙烯、玻璃	<4	18	
铬除外)				
汞	玻璃	<4	28	
砷	聚乙烯、玻璃	<4	180	
六价铬	聚乙烯、玻璃	<4	1	
氰化物	聚乙烯、玻璃	<4	2	
挥发性有机物	玻璃 (棕色)	<4	7	采样瓶装满装实
				并密封
半挥发性有机物	玻璃 (棕色)	<4	10	采样瓶装满装实
				并密封
难挥发性有机物	玻璃 (棕色)	<4	14	

表 4.2-8 新鲜样品保存条件和保存时间

3.实验室质量控制

(1) 精密度控制

1) 测定率

每批样品每个分项目分析时需做 20%的平行样品, 当 5 个样品以下时, 平行样品不少于 1 个。

2) 测定方式

由分析者自行编入的明码平行样,或由质控员在采样现场或实验室编入的密码平行样。

3) 合格要求

平行双样测定结果的误差在允许误差范围之内者为合格。当平行双样测定合格率低于 95%时,除对当批样品重测定外,在增加样品数 10%-20%的平行样,直至平行双样测定合格率大于 95%。

4) 可疑数据的取舍

由于非标准布点采样或由运输、储存、分析的失误所造成的离群数据和可疑数据,无需检验就应剔除,在确认没有失误的情况下,应用用 Grubbs、Dixon 法检验剔除。

5)调查结果的表示

- ①一组测定数据用 Grubbs、Dixon 法检验剔除离群值后以平均值报出;
- ②低于分析方法检出限的测定值按"未检出"报出,但应注明检出限。参加统计时,按二分之一检出限计算;但在计算检出限时,按未检出统计。
 - 6) 调查数据录入的位数
- ①表示分析结果的有效数字一般保留三位,但不能超过方法检出限的有效数字位数。
- ②表示分析结果精密度的数据,只取一位有效数字。当测定次数很多时,最多只取两位有效数字。
 - 4.采样过程中的二次污染防控及健康安全防护
 - (1) 采样施工过程污染控制
- 1)本次采样分为土壤和地下水采样,动用的机械主要为汽车钻机设备,会有一定的噪声及汽车尾气,可能会对周边环境造成一定影响。汽车钻机设备土壤取样,采样孔孔径小,不会造成土壤中挥发性有机物大量挥发,有利土壤现状污染的控制。
 - 2)为防止交叉污染,在每个土壤采样点和地下水监测井钻探前,钻探设备钻头及采样工具均用 10%的稀盐酸清洗两遍,然后再用蒸馏水清洗两遍。在钻取不同深度的土壤样品时,钻头用蒸馏水清洗两遍。

(2) 现场健康和安全防护控制

项目现场采样期间杜绝各类重大责任事故、人身伤亡事故、消防事故、治保事故、交通事故、扰民事故、环境事故等。项目负责人对安全作业目标负责。现场工作开始前召开健康和安全说明会,向所有现场人员讲解现场潜在危险及对应的风险控制方案,展示个人防护设备和应急物品的使用。在施工前对作业人员做好衣穿戴培训工作,进入现场采样的工作人员,必须按规定穿戴防护装备。根据情况佩戴过滤式防毒面具、防化学手套、鞋子等防护装备。

4.3 监测结果分析

4.3.1 土壤环境污染评价标准

1. 土壤环境污染评价标准

本次调查采用《建设用地土壤污染风险管控标准(试行)》(GB36600—2018) 作为土壤污染风险筛选依据,将其中各类污染物的风险筛选值作为判定该污染物 在本次调查区域内是否启动风险评价的标准值。如果监测结果未超过风险筛选值, 则污染物对人体的健康风险可以忽略。

该标准将需要开展土壤污染调查的场地依据土地利用方式分为两类:第一类用地包括 GB 50137 规定的城市建设用地中的居住用地(R)、公共管理与公共服务用地中的中小学用地(A33),医疗卫生用地(A5)和社会福利设施用地(A6),以及公园绿地(G1)中的社区公园或儿童公园用地等。第二类用地包括 GB 50137规定的城市建设用地中的工业用地(M),物流仓储用地(W),商业服务业设施用地(B),道路与交通设施用地(S),公用设施用地(U),公共管理与公共服务用地(A)(A33、A5、A6除外),以及绿地与广场用地(G)(G1中的社区公园或儿童公园用地除外)等。由于本次调查的场地属于在产的工业用地(M),因此调查采用该标准中的第二类用地风险筛选值作为筛选依据。

表 4.3-1 建设用地土壤污染风险筛选值和管制值(基本项目)

单位: mg/Kg

序号	污染物名称	CAS 编号	筛选值		管制		
			第一类	第二类	第一类	第二类	
			用地	用地	用地	用地	
重金属	重金属无机物						
1	砷	7440-38-2	20^{\odot}	60 [©]	120	140	
2	镉	7440-43-9	20	65	47	172	
3	铬 (六价)	18540-29-9	3.0	5.7	30	78	
4	铜	7440-50-8	2000	18000	8000	36000	
5	铅	7439-92-1	400	800	800	2500	
6	汞	7439-97-6	8	38	33	82	
7	镍	7440-02-0	150	900	600	2000	

挥发性	挥发性有机物						
8	四氯化碳	56-23-5	0.9	2.8	9	36	
9	氯仿	67-66-3	0.3	0.9	5	10	
10	氯甲烷	74-87-3	12	37	21	120	
11	1,1-二氯乙烷	75-34-3	3	9	20	100	
12	1,2-二氯乙烷	107-06-2	0.52	5	6	21	
13	1,1-二氯乙烯	75-35-4	12	66	40	200	
14	顺-1,2-二氯乙烯	156-59-2	66	596	200	200	
15	反-1,2-二氯乙烯	156-60-5	10	54	31	163	
16	二氯甲烷	75-09-2	94	616	300	2000	
17	1,2-二氯丙烷	78-87-5	1	5	5	47	
18	1,1,1,2-四氯乙烷	630-20-6	2.6	10	26	100	
19	1,1,2,2-四氯乙烷	79-34-5	1.6	6.8	14	50	
20	四氯乙烯	127-18-4	11	53	34	183	
21	1,1,1-三氯乙烷	71-55-6	701	840	840	840	
22	1,1,2-三氯乙烷	79-00-5	0.6	2.8	5	15	
23	三氯乙烯	79-01-6	0.7	2.8	7	20	
24	1,2,3-三氯丙烷	96-18-4	0.05	0.5	0.5	4	
25	氯乙烯	75-01-4	0.12	0.43	1.2	4.3	
26	苯	71-43-2	1	4	10	40	
27	氯苯	108-90-7	68	270	200	1000	
28	1,2-二氯苯	95-50-1	560	560	560	560	
29	1,4-二氯苯	106-46-7	5.6	20	56	200	
30	乙苯	100-41-4	7.2	28	72	280	
31	苯乙烯	100-42-5	1290	1290	1290	1290	
32	甲苯	108-88-3	1200	1200	1200	1200	
33	间二甲苯+对二	108-38-3,	163	570	500	570	
	甲苯	106-42-3					
34	邻二甲苯	95-47-6	222	640	640	640	

半挥发	半挥发性有机物						
35	硝基苯	98-95-3	34	76	190	760	
36	苯胺	62-53-3	92	260	211	663	
37	2-氯酚	95-57-8	250	2256	500	4500	
38	苯并[a]蒽	56-55-3	5.5	15	55	151	
39	苯并[a]芘	50-32-8	0.55	1.5	5.5	15	
40	苯并[b]荧蒽	205-99-2	5.5	15	55	151	
41	苯并[k]荧蒽	207-08-9	55	151	550	1500	
42	薜	218-01-9	490	1293	4900	12900	
43	二苯并[a, h]蒽	53-70-3	0.55	1.5	5.5	15	
44	茚并[1,2,3-cd]芘	193-39-5	5.5	15	55	151	
45	萘	91-20-3	25	70	255	700	

注:①具体地块土壤中污染物检测含量超过筛选值,但等于或者低于土壤环境背景值不纳入污染地块管理。土壤环境背景值可参见《建设用地土壤污染风险管控标准(试行)》

(GB36600—2018) 附录 A。

2. 地下水环境评价标准

根据《关于进一步步明确重点行业企业用地调奇相关要求的通知》(环办土壤函〔2018〕924号)规定,地下水检测结果依照《地下水质量标准》的 III 类限值进行评价。评价标准中未涉及的污染物项目,暂不进行评价。

分类 I类 II类 III类 IV 类 V 类 项目 一般化学指标 $5.5 \le pH \le 6.5$, pH<5. 5 $6.5 \le pH \le 8.5$ pН 8.5<pH≤9.0 或pH>9.0 总硬度 (以 CaCO3 计) ≤150 ≤500 ≤450 ≤650 >650 (mg/L)溶解性固体 (mg/L) ≤500 >2000 ≤300 ≤1000 ≤2000 硫酸盐 (mg/L) ≤50 ≤150 ≤250 ≤350 >350 氯化物(mg/L) ≤50 ≤150 ≤250 ≤350 >350

表 4.3-2 地下水质量分类指标

氨氮(NH4)(mg/L)	≤0.02	≤0.10	≤0.50	≤1.50	>1.50
挥发性酚(以苯酚计)(mg/L)	≤0.001	≤0.001	≤0.002	≤0.01	>0.01
耗氧量(COD _{Mn} 法,以 O2 计)(mg/L)	≤1.0	≤2.0	≤3.0	≤10.0	>10.0
铁(Fe)(mg/L)	≤0.1	≤0. 2	≤0.3	≤2.0	>2.0
铜 (Cu) (mg/L)	≤0.01	≤0.05	≤1.0	≤1.50	>1.50
锌 (Zn) (mg/L)	≤0.05	≤0.5	≤1.00	≤5.00	>5.00
	毒	理学指标			
硝酸盐(以N计)(mg/L)	≤2.0	≤5.0	≤20.0	≤30.0	>30.0
亚硝酸盐(以N计)(mg/L)	≤0.01	≤0. 10	≤1.0	≤4.8	>4.8
氰化物(mg/L)	≤0.001	≤0.01	≤0.05	≤0.1	>0.1
氟化物(mg/L)	≤1.0	≤1.0	≤1.0	≤2.0	>2.0
铬 (六价 Cr ⁶⁺) (mg/L)	≤0.005	≤0.01	≤0.05	≤0.10	>0.10
镍 (Ni) (mg/L)	≤0.005	≤0.05	≤0.05	≤0.10	>0.10
铅 (Pb) (mg/L)	≤0.005	≤0.005	≤0.01	≤0.10	>0.10
镉 (Cd) (mg/L)	≤0.0001	≤0.001	≤0.01	≤0.01	>0.02
砷 (As) (mg/L)	≤0.001	≤0.001	≤0.005	≤0.01	>0.01
汞 (Hg) (mg/L)	≤0.00005	≤0.0005	≤0.001	≤0.001	>0.001
三氯乙烷(ug/L)	≤0.5	≤6	≤60	≤300	>300
四氯化碳(ug/L)	≤0.5	≤0.5	≤2.0	≤50.0	>50.0
苯(ug/L)	≤0.5	≤1.0	≤10.0	≤120	>120
甲苯 (ug/L)	≤0.5	≤140	≤700	≤1400	>1400

注: I 类: 地下水化学组分低,适用于各种用途; II 类: 地下水化学组分较低,适用于各种用途; III 类: 地下水化学组分含量较高,主要适用于集中式饮水水源地及农、工业用水; IV 类: 地下水化学组分含量较高,以农业、工业用水要求为依据,以农业和工业用水质量要求以及一定水平的人体健康风险为依据,适用于农业和部分工业用水,适当的处理后可作为生活饮水; V 类: 地下水化学组分含量高,不宜饮用,其他用水可根据目的选用。

4.3.2 监测结果分析

1.场地内土壤污染物检测结果分析

本次调查共计布设土壤采样点 11 个,样点分布点位见图 4.2-1。0~0.5 m、0.5~1m、2.5~3m 样品送检分析,5 个平行样品,共计 36 个样品,各污染物的统计分析见表 4.3-3、4.3-4。

表 4.3-3 有机污染物检出统计分析(单位 mg/kg)

点位	深度 (m)	———————————— 石油烃	VOC	SVOC
S1	0-0.5	/	ND	ND
S2	0-0.5	/	ND	ND
	0.5-1	/	ND	ND
	2.5-3	/	ND	ND
	2.5-3(平行)	/	ND	ND
S3*	0.5-1	122	ND	ND
	0.5-1 (平行)	110	ND	ND
	2.5-3	106	ND	ND
	3.5-4	125	ND	ND
S4	0-0.5	115	ND	ND
	0.5-1	113	ND	ND
	2.5-3	95.5	ND	ND
S5	0-0.5	/	ND	ND
	0.5-1	/	ND	ND
	2.5-3	/	ND	ND
S 6	0-0.5	/	ND	ND
	0.5-1	/	ND	ND
	0.5-1 (平行)	/	ND	ND
	2.5-3	/	ND	ND
S7	0-0.5	/	ND	ND
	0.5-1	/	ND	ND
	2.5-3	/	ND	ND
S 8	0-0.5	/	ND	ND
	0.5-1	/	ND	ND
	2.5-3	/	ND	ND
	2.5-3 (平行)	/	ND	ND
S9*	0.5-1	/	ND	ND
	2.5-3	/	ND	ND
	3.5-4	/	ND	ND
S10*	0.5-1	/	ND	ND
	1.5-2	/	ND	ND
	3.5-4	/	ND	ND
S11	0-0.5	/	ND	ND
	0-0.5 (平行)	/	ND	ND
	0.5-1		ND	ND
	2.5-3	/	ND	ND

备注: S3、S9m、S10点位表层硬化层较厚,为了更详尽了解土壤状态,加深1米取样厚度。

表 4.3-4 各重金属检出统计分析(单位 mg/kg)

点	深度 (m)	pН	铜	标准	锌	标准	铅	标准	镍	标准	镉	标准	汞	标准	砷	标准	六价铬	标准
位																		
S1	0-0.5	8.04	36.40	18000	131.00	-	21.70	800	29.80	900	0.09	65	0.10	38	15.60	60	ND	5.7
S2	0-0.5	8.64	25.70	18000	86.6	-	14.80	800	30.10	900	0.06	65	0.02	38	18.30	60	ND	5.7
	0.5-1	8.27	30.60	18000	616	-	20.70	800	69.50	900	0.08	65	0.02	38	15.60	60	ND	5.7
	2.5-3	7.67	25.80	18000	63.90	-	18.80	800	29.60	900	0.07	65	0.02	38	14.40	60	ND	5.7
	2.5-3(平行)	7.63	25.70	18000	63.30	-	17.90	800	29.40	900	0.07	65	0.02	38	15.50	60	ND	5.7
S3	0.5-1	8.63	30.7	18000	57.20	-	17.40	800	31.90	900	0.06	65	0.04	38	15.20	60	ND	5.7
	0.5-1(平行)	8.57	30.5	18000	63.20	-	17.00	800	32.70	900	0.05	65	0.04	38	16.80	60	ND	5.7
	2.5-3	8.37	20.5	18000	43.90	-	20.90	800	21.40	900	0.06	65	0.02	38	15.30	60	ND	5.7
	3.5-4	7.74	31.5	18000	63.80	-	23.9	800	23.90	900	0.10	65	0.01	38	19.80	60	ND	5.7
S4	0-0.5	8.13	22.90	18000	56.10	-	28.50	800	25.30	900	0.08	65	0.02	38	14.90	60	ND	5.7
	0.5-1	8.48	32.50	18000	71.60	-	18.40	800	29.90	900	0.07	65	0.01	38	18.80	60	ND	5.7
	2.5-3	7.98	31.20	18000	73.20	-	23.90	800	32.90	900	0.07	65	0.02	38	15.00	60	ND	5.7
S5	0-0.5	6.28	35.20	18000	57.50	-	15.60	800	31.00	900	0.11	65	0.01	38	19.50	60	ND	5.7
	0.5-1	8.23	36.80	18000	59.50	-	20.80	800	30.50	900	0.10	65	0.01	38	19.60	60	ND	5.7
	2.5-3	7.91	31.80	18000	55.70	-	19.10	800	42.40	900	0.10	65	0.01	38	19.20	60	ND	5.7
S6	0-0.5	8.01	28.50	18000	74.10	-	27.4	800	27.40	900	0.06	65	0.03	38	15.30	60	ND	5.7
	0.5-1	7.63	30.70	18000	63.90	-	32.70	800	32.70	900	0.06	65	0.01	38	13.10	60	ND	5.7

	0.5-1(平行)	7.68	30.80	18000	67.50	-	32.60	800	36.40	900	0.07	65	0.01	38	12.6	60	ND	5.7
	2.5-3	8.61	29.90	18000	138.5	-	36.40	800	15.50	900	0.08	65	0.01	38	12.6	60	ND	5.7
S7	0-0.5	8.67	28.60	18000	13.30	-	5.75	800	7.70	900	0.06	65	0.01	38	19.50	60	ND	5.7
	0.5-1	8.20	24.50	18000	74.20	-	20.70	800	26.20	900	0.07	65	0.02	38	11.20	60	ND	5.7
	2.5-3	8.69	28.50	18000	55.40	-	23.60	800	32.10	900	0.06	65	0.01	38	3.51	60	ND	5.7
S 8	0-0.5	8.61	28.20	18000	69.90	-	28.30	800	28.20	900	0.08	65	0.02	38	3.91	60	ND	5.7
	0.5-1	8.17	30.20	18000	60.10	-	20.70	800	28.00	900	0.03	65	0.02	38	5.11	60	0.22	5.7
	2.5-3	7.42	29.90	18000	64.00	-	18.20	800	33.00	900	0.06	65	0.03	38	10.20	60	ND	5.7
	2.5-3(平行)	7.46	29.7	18000	133	-	18.80	800	34.70	900	0.06	65	0.03	38	11.40	60	ND	5.7
S 9	0.5-1	8.62	30.50	18000	64.60	-	33.30	800	37.60	900	0.07	65	0.03	38	13.20	60	ND	5.7
	2.5-3	8.32	26.60	18000	59.10	-	22.80	800	25.10	900	0.08	65	0.02	38	13.70	60	0.22	5.7
	3.5-4	8.20	26.30	18000	49.30	-	24.50	800	26.80	900	0.06	65	0.01	38	14.60	60	ND	5.7
S10	0.5-1	8.14	28.20	18000	50.80	-	25.90	800	31.10	900	0.12	65	0.01	38	14.30	60	ND	5.7
	1.5-2	8.04	28.20	18000	57.40	-	11.00	800	37.00	900	0.06	65	0.02	38	18.70	60	ND	5.7
	3.5-4	8.27	32.20	18000	64.6	-	19.80	800	37.10	900	0.06	65	0.03	38	19.60	60	ND	5.7
S11	0-0.5	8.89	32.50	18000	109	-	18.80	800	31.10	900	0.07	65	0.03	38	19.80	60	0.42	5.7
	0-0.5(平行)	8.86	32.20	18000	111	-	19.90	800	30.40	900	0.06	65	0.03	38	19.10	60	0.44	5.7
	0.5-1	8.07	29.30	18000	64.50	-	19.90	800	32.10	900	0.09	65	0.02	38	17.80	60	ND	5.7
	2.5-3	8.49	27.90	18000	58.70	-	11.60	800	38.80	900	0.06	65	0.01	38	19.20	60	ND	5.7

备注:除 pH 单位为无量纲外,其余单位均为 mg/kg; ND 表示实验室检测未达检测限,未检出。

	类别	样品数量 (个)	检出数量 (个)	检出浓度 范围	超标样品数 (个)
	铜 (Cu) (mg/kg)	36	36	7.74-36.60	0
	铬 (六价 Cr ⁶⁺)(mg/kg)	36	4	0.22-0.44	0
	镍 (Ni) (mg/kg)	36	36	7.70-69.50	0
重金属	铅 (Pb) (mg/kg)	36	36	11.00-36.40	0
	镉 (Cd) (mg/kg)	36	36	0.03-0.12	0
	砷 (As) (mg/kg)	36	36	3.51-19.80	0
	汞 (Hg) (mg/kg)	36	36	0.01-0.1	0
	рН	36	36	7.07-8.49	0
石油烃	(C10-C40) (mg/kg)	7	7	95.5-125	0
挥发性有	机物(VOC)(mg/kg)	36	0	_	0
半挥发	发性有机物(SVOC) (mg/kg)	36	0	-	0

表 4.3-5 土壤检测因子检出情况一览表

土壤中重金属、石油烃有检出,挥发性有机物、半挥发性有机物未检出。对比筛选值,检出污染物远低于筛选值,土壤样品中无污染物超标。厂区内除了特征因子的重金属外,铜、铬、镉、汞等重金属均有检出,对比 S11 对照点,可能是该区域背景土壤中就含有该相关因子。

2018 年 5 月商务车分公司曾对厂区土壤环境进行监测,共布设土壤采样点 11 个,其中,5 个深层土壤采样点,6 个表层土壤采样点(20cm~50cm)。土壤监测深层土壤采样深度为 6 米,其中 3 米以内每间隔 1 米取样,3-6 米每间隔 1.5 米取一份样品。总计 31 份土壤样品。

2019年监测点位布设较 2018年相比,将去年点位进行位移,更接近疑似污染区域的重点设施、设备,土壤监测项目执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)最新标准规定的 45 项检测因子,监测更全面。

图 4-1 深层土壤采样点(S)、表层土壤采样点(BS)和地下水监测点(W)

检测结果如表 4.3-6 所示。表 4.3-5 与表 4.3-6 数据对比可知,铬和石油烃有 检出,其他检出因子浓度大致在同一范围,可见,经过 2 年的监测,厂区土壤都 未出现污染物超标现象,也未出现污染物明显累积现象,说明厂区内土壤目前处 于良好状态,未有污染。

K 113 0 2010 1 X EM 1 E E 1 M									
检测项目	铜	铅	镍	镉	汞	砷	六价铬	有机物	
样品量(个)	31	31	31	31	31	31	31	31	
检出率(%)	100	100	100	100	100	100	0	0	
最大值(mg/kg)	49.50	37.20	34.60	1.14	0.08	13.70	_	1	
最小值(mg/kg)	17.00	20.10	19.60	0.07	0.01	5.40	_		
均值	22.02	25.32	26.50	0.20	0.02	9.21	_		
筛选值	18000	800	900	65	38	60	_		
超标个数	0	0	0	0	0	0	0	0	
超标率(%)	0	0	0	0	0	0	0	0	

表 4.3-6 2018 年土壤检测因子检出情况一览表

2. 场地内地下水污染物检测结果分析

本厂区地下水样品全部送检,共计 6 个(包含 1 个平行样品),检测结果见表 4.3-7 所示,根据检测结果确定本场地地下水筛选值如表 4.3-8,超标情况统计见表 4.3-9。

表 4.3-7 地下水样品污染物检出情况统计

点位	W1	W2	W2 (平行)	W3	W4	W5
检测指标						
pH 值	7.22	7.26	7.25	7.10	7.34	7.18
耗氧量	1.74	3.04	3.02	0.63	1.49	0.79
氨氮	0.29	0.026	0.026	0.028	0.046	0.022
硫酸盐	13.3	20.9	22.5	12.4	36.7	3.90
硝酸盐	0.5	1.1	1.1	0.9	4.0	0.492
亚硝酸盐	0.002	0.002	0.002	0.002	ND	0.009
氰化物	ND	ND	ND	ND	ND	ND
氟化物	0.568	0.648	0.614	0.547	0.584	0.658
六价铬	ND	ND	ND	ND	ND	ND
铜	ND	ND	ND	ND	ND	ND
锌	ND	0.032	0.033	ND	ND	ND
铅	0.015	ND	ND	0.031	0.033	ND
镍	ND	ND	ND	ND	ND	ND
镉	ND	ND	ND	ND	ND	ND
汞	0.61×10 ⁻³	ND	ND	1.92 ×10 ⁻³	0.16×10 ⁻³	ND
砷	2.1×10 ⁻³	0.9 ×10 ⁻³	0.9 ×10 ⁻³	0.8 ×10 ⁻³	0.5 ×10 ⁻³	0.6×10 ⁻³
苯	ND	ND	ND	ND	ND	ND
甲苯	ND	ND	ND	ND	ND	ND
三氯乙烷	ND	ND	ND	ND	ND	ND
四氯化碳	ND	ND	ND	ND	ND	ND

注:除 pH 无量纲外,其余单位为 mg/L;ND 表示实验室检测未达检测限,未检出。

表 4.3-8 土地下水污染风险筛选值(mg/L)

分类项目	III类							
一般化学指标								
рН	6.5≤pH≤8.5							
硫酸盐(mg/L)	≤250							
氨氮(NH4)(mg/L)	≤0.50							
耗氧量(COD _{Mn} 法,以 O2 计)(mg/L)	≤3.0							
铜 (Cu) (mg/L)	≤1.0							
锌 (Zn) (mg/L)	≤1.00							
	毒理学指标							
硝酸盐(以N计)(mg/L)	≤20.0							
亚硝酸盐(以N计)(mg/L)	≤1.0							
氰化物(mg/L)	≤0.05							
氟化物(mg/L)	≤1.0							
铬 (六价 Cr ⁶⁺) (mg/L)	≤0.05							
镍 (Ni) (mg/L)	≤0.05							
铅 (Pb) (mg/L)	≤0.01							
镉 (Cd) (mg/L)	≤0.01							
砷 (As) (mg/L)	≤0.005							
汞 (Hg) (mg/L)	≤0.001							
三氯乙烷(ug/L)	≤60							
四氯化碳(ug/L)	≤2.0							
苯 (ug/L)	≤10.0							
甲苯 (ug/L)	≤700							

表 4.3-9 地下水检出因子超标情况一览表

类别	样品数量(个)	检出数量(个)	超标样品数(个)						
一般化学指标									
рН	6	6	0						
硫酸盐 (mg/L)	6	6	0						
氨氮(NH4)(mg/L)	6	6	0						
耗氧量(COD _{Mn} 法,以O2计)(mg/L)	6	6	0						
铜 (Cu) (mg/L)	6	0	0						
锌 (Zn) (mg/L)	6	2	0						
	毒理学指标								
硝酸盐(以N计)(mg/L)	6	6	0						
亚硝酸盐(以N计)(mg/L)	6	6	0						
氰化物(mg/L)	6	0	0						
氟化物(mg/L)	6	6	0						
铬(六价 Cr ⁶⁺)(mg/L)	6	0	0						
镍 (Ni) (mg/L)	6	0	0						
铅 (Pb) (mg/L)	6	2	0						
镉 (Cd) (mg/L)	6	0	0						
砷 (As) (mg/L)	6	6	0						
汞 (Hg) (mg/L)	6	3	0						
三氯乙烷(ug/L)	6	0	0						
四氯化碳(ug/L)	6	0	0						
苯(ug/L)	6	0	0						
甲苯 (ug/L)	6	0	0						

本次地下水监测共送检 6 个地下水样品(含 1 个平行样),通过对各类污染物检出及超标分析结果如下:

- (1) 水样 PH 值介于 7.10-7.34 之间, 所有样品均达到Ⅲ类标准。
- (2) 重金属锌、铅、砷、汞有检出,挥发性有机物未检出,与筛选值比对后可知,检出的重金属均未超过地下水 III 类标准。可见,厂区内地下水目前处于良好状态,未有污染现象。

5.结论和建议

5.1 土壤隐患排查与监测结论

5.1.1 土壤隐患排查结论

通过土壤隐患排查,得出以下排查结论:

- (1) 安徽江淮汽车集团股份有限公司商务车分公司厂区内自建厂以来存在的污染土壤及地下水的潜在污染因子有重金属(铅、砷、镍、锌)、环烷烃、芳香烃、石油烃、二甲苯等。
- (2)) 安徽江淮汽车集团股份有限公司商务车分公司生产加工装置都设置在密闭车间内,且运行维护措施完善,造成土壤污染的风险低。
- (3) 安徽江淮汽车集团股份有限公司商务车分公司的地下储罐分别是汽油、柴油储罐,所有储罐均下均设置安放于防渗槽中,地表储罐其设计建设和日常管理使其在存储期间污染周边土壤的可能性较低。地下储罐也有完善的日常管理和应急措施,设有液位监测装置和静电报警系统,造成土壤污染的风险低。
- (4) 安徽江淮汽车集团股份有限公司商务车分公司内货物主要贮存在生产车间中固定区域,转移及转运也有专门区域。液体化学品均贮存于密封性良好的钢塑复合桶中,并存储于防雨、防渗的车间中,有完善的管理措施,对土壤及地下水造成影响可能性小。
- (5)安徽江淮汽车集团股份有限公司商务车分公司污水处理站有完善的运营管理措施,污水收集、处理与排放设施的设计较完善,并设有应急事故池和相应应急措施,如发生泄漏等事故能及时处理,造成土壤及地下水造成影响可能性小。
- (6)安徽江淮汽车集团股份有限公司商务车分公司危废站,根据固废种类分类堆放,有明确去向,地面有防渗处理,造成土壤及地下水造成影响可能性小。

5.1.2 土壤环境监测结论

本次安徽江淮汽车集团股份有限公司商务车分公司土壤环境监测共设置 11 个土壤采样点位, 5个地下水采样点位,共筛选送检 36个土壤样品和 6个地下 水样品。检测结论如下:

- (1) 土壤中重金属、石油烃均有检出,挥发性有机物、半挥发性有机物未 检出。对比筛选值,检出污染物远低于筛选值,土壤样品中无污染物超标。
- (2)经过2年的监测,厂区土壤都未出现污染物超标现象,也未出现污染物明显累积现象,说明厂区内土壤目前处于良好状态,未有污染。
 - (3) 水样 PH 值介于 7.10-7.34 之间, 所有样品均达到Ⅲ类标准。
- (4) 重金属锌、铅、砷、汞有检出,挥发性有机物未检出,与筛选值比对 后可知,检出的重金属均未超过地下水 III 类标准。

5.2 建议

根据此次对安徽江淮汽车集团股份有限公司商务车分公司厂区排查与监测结果分析并结合 2018 年监测结果可知,商务车分公司厂区生产活动未影响本区域内土壤及地下水环境,为保持土壤及地下水良好状态,提出如下建议:

1.清洁生产

持续推进清洁生产工作,生产中坚持"废物减量化、污染预防"的原则;

2.日常管理

1) 日常监管

为降低土壤污染风险,对工业活动区域需开展特定的监管和检查。负责日常 监管的人员须熟悉各种生产设施的运转和维护,对设备泄漏能够正确应对,能对 防护材料、污染扩散和渗漏作出判断。

日常监管需结合生产工艺类型、防护措施和监管手段进行土壤污染的可能性评估。在储存散装液体时,需匹配不可渗漏的溢流收集装置。各种储罐和溢流收集装置需安装在具有防渗功能的设施上。地下储罐为不可渗漏的容器或者有双重壁的储罐,同时匹配有效的泄漏检测系统,定期开展检查。液体燃料或废油的地下储存需遵守特定管理条例。

装卸点下方需设置不渗漏密闭设施,进料和出料管道出口不外露,溢流安全 装置为不可渗容器。地上管线和下水道必须频繁检查。地下管道必须是双层的, 并装备泄漏检测装置。地下管道需具备腐蚀保护和防渗保护,须遵守检查程序, 并在发生事故时提供应急预案。应选择防泄漏的泵。若用管道运输液体,需设计 在地表,匹配有效的检查程序。

散装物品的储存设施必须有覆盖。转运散装物品应优先选择在封闭环境内进行。储存和转移包装好的液体,须在防渗设施上方进行,经常检查储存的包装并且立即清除任何泄漏。存储和运输液体包装须在液体存储设备上进行,包装必须适合存储。定期检查,若有任何泄漏须即刻清理。

工业生产须使用防渗存储设施,防渗设施须安装在设备或活动的下方和周围, 形成四周有凸起的围堰,并确保具有足够的容纳空间。释放出的污染物必须定期 清理。还必须制定针对性的应急程序,发生意外事故时防止出现土壤污染。

车间的地面必须能防止液体渗透。设备和机器在使用时,具有不可渗漏的收集和防渗设施,或者安装在不可渗漏的地面上。必须建立有效的设施和程序,以清除物质的溢流和泄漏。

2) 目视检查

对溢流收集和故障发生率较低的简单设施进行的检查,可由那些经验丰富的员工完成。对于开放防渗设施的目视检查,检查员需保持记录结果和行动日志。结果包含:

- ①检查设施类型和名称;
- ②检查地点:
- ③检查时间和频率;
- ④检查方法(视觉、抽样、测量等);
- ⑤结果报告和记录方式:
- ⑥对违规行为采取的行动。

路面防渗:为了证明地面和路面满足防渗防漏的需求,需要定期对其进行检查,检查包括接口结构、凸起边缘和破碎程度等。地面目视检查内容包括:

- ① 地面或路面已经使用的时间:
- ② 检查时观察到的液体渗漏情况;
- ③检查时地面的状况。

罐体防渗: 地下储罐和管道设计需要包括底部密封保护措施的内容。底部密

封层通常不能通过目测观察到,一般通过安装自动监测系统来检查。拟建造的新储罐和需要翻修的旧储罐必须符合通用标准和要求。对新建储罐和翻修储罐,最重要得原则是要在罐底下方额外加装密封装置,还要在罐底和密封装置之间再安装渗漏检测装置。

污水管道:现有混凝土下水道通常是不防渗的,须有一个完善的监测系统,以降低企业排污管道污染土壤的风险。

3.落实责任

落实层级环保责任,确保各个废弃物处置环节责任到人,将员工利益与环境 保护绩效直接挂钩,提高员工的积极性。

4.环境应急预案演练

1) 预案培训

- ①通过多种形式的宣传和培训手段,对公司员工广泛宣传法律法规和应急常识:
 - ②利用公司内部的宣传栏向员工宣传应急相关知识。
- ③现场部门应利用班组例会加强对员工应急预案的教育,使其熟悉预案启动流程,掌握应急处置措施。
- ④部门内部应在存在环境风险的车间,组织兼职应急处理队伍,加强演练,使其熟练掌握应急处置措施。
- ⑤对存在重要环境风险的岗位应加强规范操作教育,防范环境事件的发生,每年安排 1 次专项会议,详细讲解潜在危险源和预防措施。
- ⑥ 对全体职工开展环境事故处置技术方面的培训。

2) 预案演练

环境突发事件应急演练每年组织一次,由应急指挥领导小组负责,可单独开展,也可与其他事故演练同时进行。演练前需制定详细的演练计划,包括演练的目的和内容,演练起止时间,参加演练的单位、部门、人员和演练的地点,演练过程中的环境条件,演练动用的设备、物资等。

应急指挥领导小组根据演练结果组织进行对本预案的评审。评审的内容包括: 应急处置措施的可行性、备用设备工具的齐全性及适用性。

5.根据相关要求定期进行厂区内土壤及第下水检测工作。

附件1: 附录

附录 A 附图

- 图 1.2-1 排查与监测范围
- 图 1.3-1 土壤污染隐患排查工作流程
- 图 2.2-1 项目地理位置
- 图 2.2-2 冲压车间分部位置
- 图 2.2-3 全自动冲压生产线工艺及排污节点图
- 图 2.2-4 焊装车间分部位置
- 图 2.2-5 焊装工艺流程及排污节点图
- 图 2.2-6 焊装车间分部位置
- 图 2.2-7 涂装工艺流程及排污节点图
- 图 2.2-8 总装车间分部位置
- 图 2.2-9 总装工艺流程及排污节点图
- 图 2.2-10 油库分部位置
- 图 2.2-11 危废库分布位置
- 图 2.2-12 污水站分布位置
- 图 2.2-10 地块历史卫星影像图
- 图 2.3-1 厂区周边工业园区分布
- 图 2.3-3 厂区地下水流场示意图
- 图 3.2-1 地下石油储罐区
- 图 3.2-2 加油口
- 图 3.2-3 出油管路
- 图 3.2-4 厂区货物存储、转运
- 图 3.2-5 涂装车间调漆间
- 图 3.2-6 涂装车间内导流沟
- 图 3.2-7 安徽江淮汽车集团股份有限公司商务车分公司重金属污水处理站
- 图 3.2-8 安徽江淮汽车集团股份有限公司商务车分公司污水处理站
- 图 4.1-1 厂区重点监测区域划分图
- 图 4.2-1 土壤及地下水点位布设图
- 图 4.2-2 采样点卫星定位图
- 图 4.2-3 管单层环境监测井结构
- 图 4.3-4 水质样品运输保温箱与蓝冰

附录 B 附表

- 表 2.2-1 企业简介
- 表 2.2-2 厂区建设内容一览表
- 表 2.2-3 项目生产规模一览表
- 表 2.2-4 项目主要原辅材料及能源一览表
- 表 2.2-5 项目主要工艺和设备一览表
- 表 2.2-6 主要危废一览表
- 表 2.2-7 企业废气及废水产生及排放情况一览表
- 表 2.2-8 企业危险废物产生以及处置措施一览表
- 表 2.3-1 厂区 1Km 范围内企业分布
- 表 2.3-2 1Km 主要环境保护目标一览表
- 表 2.3-3 建井参数
- 表 3.1-1 识别出的企业环境风险物质清单
- 表 3.1-2 厂区潜在污染物
- 表 3.1-3 多环芳烃的性质和毒性一览表
- 表 3.2-1 厂区生产加工装置排查结果
- 表 3.2-3 储罐设计及运行管理措施
- 表 3.2-4 液体物品包装储存设计及运行管理措施
- 表 3.2-5 企业危险废物产生以及处置措施一览表
- 表 4.2-1 地下水监测点信息表
- 表 4.2-2 土壤监测点信息表
- 表 4.2-3 洗井稳定标准
- 表 4.2-4 土壤及地下水样品采集工程量
- 表 4.2-5 现场调查工程量
- 表 4.2-6 土壤中各检测指标
- 表 4.2-7 地下水中各检测指标
- 表 4.2-8 新鲜样品保存条件和保存时间
- 表 4.3-1 建设用地土壤污染风险筛选值和管制值(基本项目)
- 表 4.3-2 地下水质量分类指标
- 表 4.3-3 有机污染物检出统计分析(单位 mg/kg)
- 表 4.3-4 各重金属检出统计分析(单位 mg/kg)
- 表 4.3-5 土壤检测因子检出情况一览表
- 表 4.3-6 2018 年土壤检测因子检出情况一览表
- 表 4.3-7 地下水样品污染物检出情况统计
- 表 4.3-8 土地下水污染风险筛选值(mg/L)
- 表 4.3-9 地下水检出因子超标情况一览表

附件 2 关于进一步明确重点行业企业用地 调查相关要求的通知

中华人民共和国生态环境部办公厅

环办土壤函 [2018] 924号

关于进一步明确 重点行业企业用地调查相关要求的通知

各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局:

目前,多个省(区、市)已按照《全国土壤污染状况详查总体方案》(以下简称《总体方案》)要求,启动了重点行业企业用地土壤污染状况调查(以下简称企业用地调查)工作。现就调查过程中出现的主要问题,将有关工作和技术要求进一步明确如下:

一、关于企业用地调查的组织实施

(一) 选择有相关经验或背景的专业队伍承担调查任务

企业用地调查专业性强、技术要求高,应委托具有场地调查 评估经验,或具有环境影响评价、环境保护竣工验收、清洁生产 审核等相关背景的专业队伍承担基础信息调查和初步采样调查工 作。各地要组织有场地调查经验的专家,结合实践操作,对承担 任务的专业队伍加强详查相关技术文件的培训。

(二) 落实企业主体责任

土地使用权人、企事业单位和其他生产经营者是保护土壤、防治土壤污染的责任主体,应认真履行监测土壤环境的义务。全

国土壤污染状况详查是一项重要的国情调查, 纳入本次调查范围的重点行业企业应切实落实土壤污染防治的主体责任, 并按照环境保护部门的部署做好详查工作, 对企业用地调查应当积极参与, 如实反映地块土壤污染情况, 配合专业队伍开展现场勘查和布点采样工作, 提供相关资料, 并对资料真实性负责。土壤环境污染重点监管单位应当按照相关技术文件要求, 自行或委托专业机构进行采样调查, 并对调查数据的真实性和准确性负责。

(三) 严格审核调查结果

基础信息调查、风险筛查、初步采样调查、风险分级等各环节工作结果,应经组织实施的环境保护部门逐级审核同意后,通过重点行业企业用地调查信息管理系统(以下简称"企业用地调查信息系统")上报。

(四) 确保调查信息安全

严格遵守敏感信息和涉密信息的管理要求, 切实加强对调查 单位和调查人员的保密管理与培训, 确保信息安全。企业用地调 查账号管理、调查对象确定、调查任务分配、调查信息批量报送 均需通过环保专网完成。

二、关于企业用地调查对象的确定

原则上,符合土壤污染重点行业类别及土壤污染重点企业筛选原则(见附件)的在产企业地块和关闭搬迁企业地块均应纳入调查范围。各地土壤环境重点监管企业、土壤环境污染重点监管单位、排污许可管理中对重金属排放提出许可排放量要求的排污单位,以及地方环境保护部门认为的其他对厂区土壤或地下水环一2一

境影响突出的企业地块, 也应纳入调查范围。

企业用地调查信息系统中调查任务维护栏所列企业名单,仅 为前期各地土壤污染重点行业企业空间位置遥感核实成果,并非 各地企业用地调查的全部对象。各省(区、市)环境保护部门应 组织市级环境保护部门在整合本行政区域内生态环境、工业和信 息化、自然资源、工商、税务等部门在产及关闭搬迁企业监管信 息的基础上,逐一甄别筛选,核实确认并动态增补,完成调查对 象确定工作。

各级环境保护部门为企业用地调查对象确定的责任主体,对调查对象的全面性、真实性、准确性负责。因排查不到位,出现应纳入而未纳入的地块,按照《土壤污染防治行动计划实施情况评估考核规定(试行)》的要求扣分。

三、关于基础信息调查

(一) 扎实做好基础信息调查工作

企业用地基础信息调查为企业用地风险筛查、初步采样调查、风险分级和日常管理提供基础性信息,是决定企业用地调查成败的核心工作。各级环境保护部门要尽快落实基础信息调查的工作经费、确定专业队伍,加强对参与此项工作的基层管理人员、技术支持单位、专业机构调查人员的技术培训;定期组织各专业机构开展工作总结与交流,在信息调查表填报中充分发挥专业机构的专业性;定期调度各专业机构工作进展,确保2018年年底完成基础信息调查工作。

(二) 加强基础信息调查质量控制

-3 -

为保证调查表的完整性、规范性和准确性,要从资料收集、调查表填报、地块信息建档和内部质量控制审核等方面做好基础信息调查的质量控制工作。各地应尽快建立基础信息调查的质量控制工作机制,组建专业的质量控制工作队伍,与基础信息调查同步开展质量监督检查。特征污染物、地下防渗措施、重点区域地表覆盖情况等,不仅要考虑地块现存企业情况,还要兼顾地块历史上企业的生产经营活动状况,经综合分析后填写。

(三) 勾画和标注地块空间信息

基础信息调查的专业机构根据资料收集及现场踏勘了解的信息, 勾画企业地块边界, 标出地块内重要区域和周边 1km 范围内的幼儿园、学校、医院、水源地等敏感受体。上传调查表时, 需同步上传该地块的空间信息文件和必要的备注说明文件。

四、关于初步采样调查

(一) 初步采样调查地块确定

根据《总体方案》的要求,对全部高关注度地块、中低关注 度地块中样本地块,开展初步采样调查。各地应结合本地实际情况,突出管理重点,合理调整确定高关注度划分标准,科学选取 样本地块,控制初步采样调查的地块数量,提高资金使用实效。

对关注度划分标准的调整,各地应结合本地重点行业企业地 块分布特点、企业管理水平、土壤环境管理能力、资金配套情况,在省级环境保护部门统筹指导下,由市级环境保护部门调整 确定本地关注度划分标准,并经省级环境保护部门上报全国土壤 污染状况详查工作办公室备案。

— 4 **—**

对中低关注度样本地块的选取,要兼顾行业、生产年限、企业规模等因素,确保地块代表性。

(二) 在产企业初步采样调查

确定开展初步采样调查的在产企业,对可能存在地下水污染的,应同步开展土壤和地下水污染调查,新布设的地下水采样井应建成长期监测井。督促在产企业建立土壤和地下水定期自行监测制度。具体按照以下原则开展工作。

- 1.厂区内及厂区周边已有地方环境保护部门认可的、可反映地块污染状况的土壤或地下水监测数据,不再开展采样调查,直接利用已有数据。
- 2.企业已有地下水监测井, 且监测井能反映地块污染状况的, 可直接利用已有监测井开展地下水污染调查。
- 3.企业没有地下水监测井或已有监测井不能反映地块污染状况的:
- (1) 地下水可能存在污染的(如存在迁移性较强的六价铬、 氯代烃、苯系物、石油烃等污染物,或地下水埋深较浅),在不 影响生产安全的情况下,地下水采样点应设置在疑似污染区,并 尽可能接近疑似污染源(如生产设施、储罐、污染泄漏点等), 调查土壤和地下水。
- (2) 地下水可能存在污染的,但因安全等原因造成疑似污染 区不具备采样条件的,在疑似污染区下游尽可能接近疑似污染源 处布设点位,调查土壤和地下水。
 - (3) 地下水污染可能性较小(如企业特征污染物迁移性较

-5 -

差,且地下水埋深较大)或无地下水的,可只调查土壤,不再调查地下水。

(三) 土壤、地下水的分析测试和评价

在初步采样调查阶段,土壤检测项目原则上应包括《土壤环境质量建设用地土壤污染风险管控标准》中的必测项目,基础信息调查阶段确定的特征污染物在必测项目外,且有测试方法的,原则上也需要测定。地块使用历史清晰,信息充分、特征污染物明确的情况下,经组织实施初步采样调查工作的地方环境保护部门认可,可仅检测特征污染物;地下水检测项目为地块特征污染物项目。

初步采样调查阶段的样品分析测试,原则上应优先采用《土壤环境质量建设用地土壤污染风险管控标准》《地下水质量标准》《全国土壤污染状况详查土壤样品分析测试方法技术规定》和《全国土壤污染状况详查地下水样品分析测试方法技术规定》推荐的分析方法,也可选用检测实验室资质认定范围内的国际标准、区域标准、国家标准及行业标准方法,但不得选用其它非标准方法或实验室自制方法。

土壤、地下水检测结果分别依照《土壤环境质量建设用地土壤污染风险管控标准》和《地下水质量标准》的 III 类限值进行评价。评价标准中未涉及的污染物项目,暂不进行评价。

五、关于企业用地调查质量管理

(一) 建立健全质量管理工作机制

企业用地调查专业性强,技术要求高,工作质量极易失控。

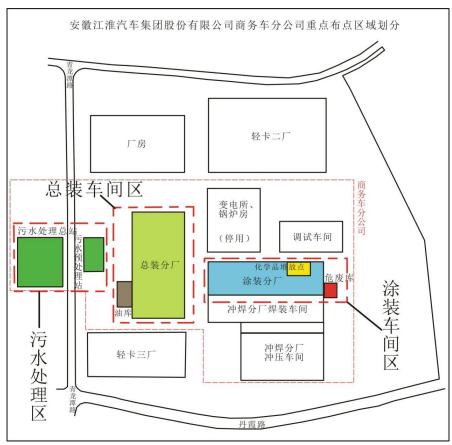
— 6 **—**

各省(区、市)环境保护部门要高度重视、切实强化企业用地调查质量管理工作,市级、县级组织实施调查工作的,需要确定市级质量控制单位。各地应结合本地组织实施特点,建立有效的质量控制工作机制,层层落实各相关方的质量管理责任。特别是基础信息调查和布点采样阶段,要组织具有场地调查评估经验的专家或委托有能力的专业队伍开展质量控制工作。

(二) 强化任务承担单位的内部质量控制

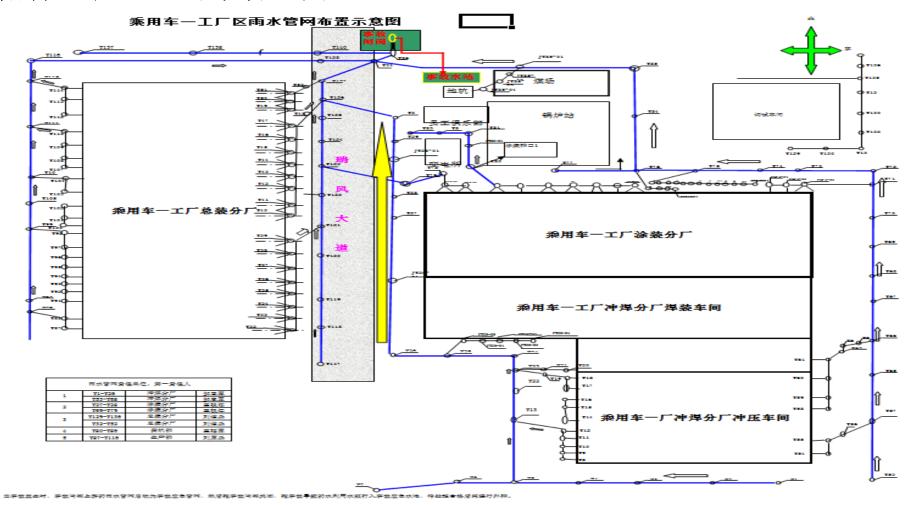
承担基础信息调查和布点采样调查的专业机构、检测实验室 应对工作质量负首要责任,要建立健全内部质量管理制度,制定 和实施内部质量控制工作计划,从严落实全过程质量管理措施,自觉接受国家和地方各级组织的监督检查。各级外审质量控制单位要对参与本地企业用地调查工作的专业机构和检测实验室进行综合评估,对相关单位和有关责任人员及时采取纠正和预防控制措施。各省级质量控制单位要编制本行政区域企业用地调查质量控制年度工作报告。

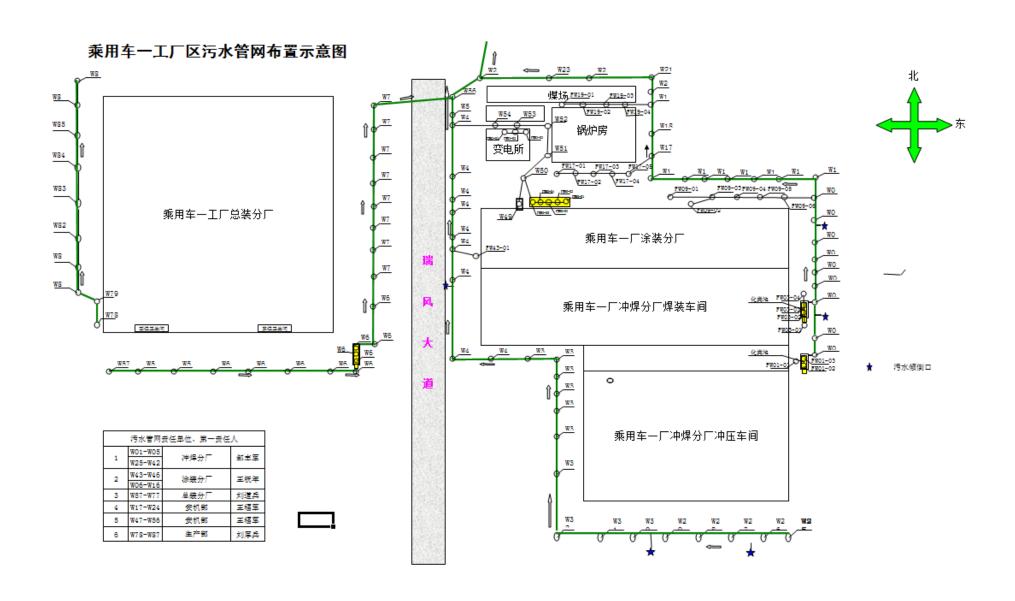
(三) 建立健全专业纠偏工作机制


风险筛查与风险分级结果需要开展专业纠偏工作。各地应明确纠偏工作技术支持单位,组建纠偏专家组,按照发现偏差、审核纠偏、纠偏结果及审核纠偏专家意见逐级上报的工作流程,组织纠偏工作。省级环境保护部门要加强对本行政区域纠偏工作的统筹和技术指导。

六、企业用地调查与日常管理衔接

加强重点行业在产企业用地调查与《工矿用地土壤环境管理


— 7 **—**


附件 3 厂区平面及卫星图

附件 4 厂区雨污水管网图

附件 5 人员访谈表

	W/ 5.70 填表人	职业	和安徽
序号	重点	是	否
1	土地建厂以前是否用于工业?		
2	土地或相邻土地是否建立过加油站、汽车修理厂、		
	广告印刷厂、干洗店、相片冲洗室、填埋场、废物	1	
	处理、储存、处置及回收厂	\vee	
3	场地内有无化学品储存罐/槽?如有是否发生过泄		1
	漏事故?		
4	场地内是否有废弃物堆放区或临时堆放区?	J	,
5	场地内是否有填埋场?		
6	场地内是否散发异味?		
7	现场是否有储存燃料油、润滑油、先涤助剂等有机物?		
8	建筑物和地表是否有污染痕迹?		1
9	现场或周边是否发现有植物生长异常情况?		
10	场地内及周边区域是否有烟囱等潜在气体放源?		J
11	厂区内是否有偷排或随意排放污水行为?		V 1
12	场地周边是否有潜在地下水污染源?		

日期	2019.5.W	填表人	当月新春知	,职业	11
序号	重月	点	र प्या भाराबर	是	否
1	土地建厂以前是否用于口	□水?			
2	土地或相邻土地是否建立 广告印刷厂、干洗店、相处理、储存、处置及回收	月片冲洗室、填土			
3	场地内有无化学品储存额 漏事故?	權/槽?如有是否	5发生过泄		不满楚
4	场地内是否有废弃物堆放	(区或临时堆放[₹?		九县村
5	场地内是否有填埋场?				VIAS
6	场地内是否散发异味?				1
7	现场是否有储存燃料油、物?	润滑油、先涤助	剂等有机	\checkmark	
8	建筑物和地表是否有污染	痕迹?			1
9	现场或周边是否发现有植	物生长异常情况	2?		1
10	场地内及周边区域是否有	烟囱等潜在气体	京放源?		1
11	厂区内是否有偷排或随意	排放污水行为?			/
12	场地周边是否有潜在地下	水 沅 沈 酒 9			7

序号	里点	是	香
1	土地建厂以前是否用于工业?		/
2	土地或相邻土地是否建立过加油站、汽车修理厂、		
	广告印刷厂、干洗店、相片冲洗室、填埋场、废物 处理、储存、处置及回收厂		
3	场地内有无化学品储存罐/槽?如有是否发生过泄漏事故?		·/
4	场地内是否有废弃物堆放区或临时堆放区?	/	
5	场地内是否有填埋场?		1
6	场地内是否散发异味?		J
7	现场是否有储存燃料油、润滑油、先涤助剂等有机物?	\checkmark	
8	建筑物和地表是否有污染痕迹?		./
9	现场或周边是否发现有植物生长异常情况?		\
10	场地内及周边区域是否有烟囱等潜在气体放源?		√
11	厂区内是否有偷排或随意排放污水行为?		$\sqrt{}$
12	场地周边是否有潜在地下水污染源?		

日期	1919.5、10 填表人 本:	る化工駅业	
序号	重点	是	否
1	土地建厂以前是否用于工业?		スト地
2	土地或相邻土地是否建立过加油站、汽车修 广告印刷厂、干洗店、相片冲洗室、填埋场 处理、储存、处置及回收厂	/	/
3	场地内有无化学品储存罐/槽?如有是否发 漏事故?	生过泄	
4	场地内是否有废弃物堆放区或临时堆放区?	\/	
5	场地内是否有填埋场?		1/
6	场地内是否散发异味?		
7	现场是否有储存燃料油、润滑油、先涤助剂等物?	等有机	
8	建筑物和地表是否有污染痕迹?		1
9	现场或周边是否发现有植物生长异常情况?		
10	场地内及周边区域是否有烟囱等潜在气体放	源?	\/
11	厂区内是否有偷排或随意排放污水行为?		1
12	场地周边是否有潜在地下水污染源?		

	2019.5.no 填表人 分野	职业	RR
序号	直点	是	否
1	土地建厂以前是否用于工业?		
2	土地或相邻土地是否建立过加油站、汽车修理厂、	/	
	广告印刷厂、干洗店、相片冲洗室、填埋场、废物	\ \ /	
	处理、储存、处置及回收厂		
3	场地内有无化学品储存罐/槽?如有是否发生过泄		44
	漏事故?		和常
4	场地内是否有废弃物堆放区或临时堆放区?		
5	场地内是否有填埋场?		
6	场地内是否散发异味?		
7	现场是否有储存燃料油、润滑油、先涤助剂等有机物?	/	
8	建筑物和地表是否有污染痕迹?		
9	现场或周边是否发现有植物生长异常情况?		
10	场地内及周边区域是否有烟囱等潜在气体放源?		
11	厂区内是否有偷排或随意排放污水行为?		
12	场地周边是否有潜在地下水污染源?		

日期	人019年5月20日 _{填表人}	职业	合配学4
序号	重点	是	否
1	土地建厂以前是否用于工业?		
2	土地或相邻土地是否建立过加油站、汽车修理厂、 广告印刷厂、干洗店、相片冲洗室、填埋场、废物 处理、储存、处置及回收厂	/	
3	场地内有无化学品储存罐/槽?如有是否发生过泄漏事故?		/
4	场地内是否有废弃物堆放区或临时堆放区?	\/	,
5	场地内是否有填埋场?		
6	场地内是否散发异味?		
7	现场是否有储存燃料油、润滑油、先涤助剂等有机物?	/	~
8	建筑物和地表是否有污染痕迹?		
9	现场或周边是否发现有植物生长异常情况?		
10	场地内及周边区域是否有烟囱等潜在气体放源?		
11	厂区内是否有偷排或随意排放污水行为?		
12	场地周边是否有潜在地下水污染源?		./

日期	2019. 5.20	填表人	2184	职业	层系					
序号	重点	į.	是	否						
1	土地建厂以前是否用于コ	土地建厂以前是否用于工业?								
2	土地或相邻土地是否建立 广告印刷厂、干洗店、村 处理、储存、处置及回收	目片冲洗室、均		✓						
3	场地内有无化学品储存部 漏事故?	是否发生过泄		不病楚						
4	场地内是否有废弃物堆放	场地内是否有废弃物堆放区或临时堆放区?								
5	场地内是否有填埋场?									
6	场地内是否散发异味?				/					
7	现场是否有储存燃料油、物?	润滑油、先流	条助剂等有机	/	,					
8	建筑物和地表是否有污染	华痕迹?								
9	现场或周边是否发现有植	查物生长异常	青况?		/					
10	场地内及周边区域是否有	 国烟囱等潜在	气体放源?		/					
11	厂区内是否有偷排或随意	(排放污水行	为?							
12	场地周边是否有潜在地门	7水污边源?								

日期	WN. (、Vo 填表人 4万W	职业	12
序号	重点	是	否
1	土地建厂以前是否用于工业?		公司生
2	土地或相邻土地是否建立过加油站、汽车修理厂、 广告印刷厂、干洗店、相片冲洗室、填埋场、废物 处理、储存、处置及回收厂		
3	场地内有无化学品储存罐/槽?如有是否发生过泄漏事故?		
4	场地内是否有废弃物堆放区或临时堆放区?		/
5	场地内是否有填埋场?		1
6	场地内是否散发异味?		
7	现场是否有储存燃料油、润滑油、先涤助剂等有机物?		
8	建筑物和地表是否有污染痕迹?		
9	现场或周边是否发现有植物生长异常情况?		
10	场地内及周边区域是否有烟囱等潜在气体放源?		
11	厂区内是否有偷排或随意排放污水行为?		
12	场地周边是否有潜在地下水污染源?		

日期	5.20	填表人	郑丽	职业	学生
序号	重	7	是	否	
1	土地建厂以前是否用于	工业?			
2	土地或相邻土地是否建 广告印刷厂、干洗店、木 处理、储存、处置及回。	相片冲洗室、填			
3	场地内有无化学品储存 漏事故?	罐/槽?如有是	否发生过泄	,	
4	场地内是否有废弃物堆放	放区或临时堆放	(区?		
5	场地内是否有填埋场?				1
6	场地内是否散发异味?				
7	现场是否有储存燃料油、物?	润滑油、先涤	助剂等有机		
8	建筑物和地表是否有污染	杂痕迹?			1
9	现场或周边是否发现有植	直物生长异常情	况?		1
10	场地内及周边区域是否有	有烟囱等潜在气	体放源?		1
11	厂区内是否有偷排或随意	意排放污水行为	?		
12	场地周边是否有潜在地下	下水污染源?			

附件 6 采样记录表

UTS

土壤现场快筛记录表

项目名称	让住汽车高等	分分1种	4611	11185	新 天	气	研	气温	24.40	气压	10	1.2 KF	વિ	采样日	期 2	7590501	D
DATE IN HIT	Anix	PID	仪	器编号		E-1-4)8	E-1-	427	采样	点位		51		检测编	号し	7590501	792
样品编号	采样深度							测试	项目(主	单位: pp	m)					/	1
	w)	VOCs	铜 Cu	铬 Cr	镍 Ni	锌 Zn	砷 As	镉 Cd	铅 Pb	汞 Hg	铊Ti	铍 Be	锑 Sb	硒 Se	银 Ag	锡 Sn	猛Mi
W X	0-0.5	4.7	72.7	67.0	23.2	766	0	0.2	24.6	0							
	6. 0	-															
备注:																	
检测人员:	\$ -14							west tree	确认:	1845							

土壤现场快筛记录表

第1页 共八页 项目名称,沙南省为新的石石了(桃花石)上境湖港与塔柳天气 桶 气温 74-40 气压 101.2 KP9 采样日期 2019.5-20 测量仪器 XRF, PID 仪器编号 E-1-418 E-1- 47 采样点位 检测编号 47519070797 样品编号 采样深度 测试项目(单位: ppm) VOCs 铜Cu 铬Cr 镍Ni 锌Zn 砷As 镉Cd 铅Pb 汞Hg 铊Ti 铍Be 锑Sb 硒Se 银Ag 锡Sn 锰Mn (m) 25.3 65.8 26.2 69.2 8.8 6.2 17.6 8 2 0-05 28.8 47.1 27.7 76.8 0 02 21.6 0.51 3.9 28.4 528 27.6 72.9 0 0-2 27.3 4 1,5-2 2.7 28.6 59.3 28.1 70.6 0 2.5.3 0.2 29.2 0 28.9 601 27.7 67.1 0 0.2 38.0 3-4 备注: 检测人员: North 现场确认: 海北

上梅加拉林体沟马主

						±	壊现场	快筛证	记录表						第 <i>以</i>) ात	共『页
项目名称	江南汽车新新	分分列的	FU(x) 213	张湖户意名	临洲天	气	時	气温	24.4	气压		01.2 K	þa	采样日	期	20191	5.20
测量仪器	XRF. I	PID	仪书	仪器编号 E-1-428 E-1-4			427				55			采样日期 2019:5 检測编号 67518か			
样品编号	采样深度			1/4						单位: pp	m)	,-				11/00	70
		VOCs	铜 Cu	铬 Cr	镍 Ni	锌Zn	砷 As	镉Cd	铅 Pb	汞 Hg	铊Ti	铍 Be	锑 Sb	硒 Se	银 Ag	锡 Sn	锰Mn
7	0-05	0./	28.1	68-4	28-3	71.8	0	0.2	21.0	ō							
8	0.5-1	s. V	29.7	78.8	27.7	75.0	0	0.2	w.7	Ú							
9	15-2	0.8	28-8	65.9	269	73.0	J	0.2	19.0	0							
a	2,5-3	0,2	28.5	.25	26.2	62.5	v	0.7	14.2	0							
	1.																
ý																	
备注:										1		1				1	
检测人员:	Rak							现场	确认:	排件	7						

土壤现场快筛记录表 第一页 共门页 项目名称 沙洛汽车高车车后车可付地下下的过渡邮车场加天气 10克 气温 2444 气压 10/,2× Pa 采样日期 2019.5.20 测量仪器 XRF PID 仪器编号 E-1- 928 E-1-427 采样点位 检测编号 W751905079E ·样品编号 采样深度 测试项目(单位: ppm) VOCs 铜Cu 铬Cr 镍Ni 锌Zn 砷As 镉Cd 铅Pb 汞Hg 铊Ti 铍Be 锑Sb 硒Se 银Ag 锡Sn 锰Mn M) 11 27.5 51.6 28.6 69.7 0.2 19.4 0 0-05 25.7 58-6 26.2 63.1 12 0.5-1 0.2 19.9 0.2 0 13 27.9 62.3 27.6 68.4 0 115-2 0.2 19.2 0 26.6 61.8 28.2 70.6 2.5-3 14 0.) 21.2 备注: BRIX 检测人员: 传讲 现场确认:

土壤现场快筛记录表

项目名称	心物特殊	初间体现	到找教	35%	叫 天	7	1874	气温	24.40	气压	10	Lucpa		采样日	期)	页1019~5	120
测量仪器	XRF、	PID	仪	器编号	' 1	-1- φ	F-1-C	027	采样	点位	56			检测编号 vi		15190501	798
样品编号	采样深度			测试项目(单位: ppm)											1	1	1
	(M)	VOCs	铜 Cu	铬 Cr	镍 Ni	锌Zn	砷 As	镉Cd	铅 Pb	汞 Hg	铊Ti	铍 Be	锑 Sb	硒 Se	银 Ag	锡 Sn	锰Mn
15	0.05	0.2	28.9	15.6	27.2	72.3	0	0.2	18.2	0							
16	0.5-1	0.4	28.3	562	26.9	708	0	0.2	2/10	0							
\Box	1.5-2	0	25.2	49.2	25.9	68-5	0	0.2	16.2	0							
18	2.5-}	0	26.1	50.3			0	0.2	16.8	D							
V																	
			-														
			-					_									
			-														
备注:	(
检测人员:	TAM.							现场	确认:	作清							

土壤现场快筛记录表

项目名称	いるなるな	Statistudal	10th T3x)+	抽相	(It was	Ę	18%	气温	W.4°C	气压	101.	LKISG		采样日		页	
测量仪器	121/21/25/25 XRF.	PID	仪	器编号	1	E-1- 42	E-1-	427	采样	点位	(7		检测编	- F	151905	w 797
样品编号	采样深度							测试	项目(单	单位: pp	m)	-		133.013.99	V	1/71/3	17/0
300	(m)	VOCs	铜 Cu	铬 Cr	镍 Ni	锌 Zn	砷 As	镉Cd	铅 Pb	汞 Hg	铊Ti	铍 Be	锑 Sb	硒 Se	银 Ag	锡 Sn	锰 Mn
19	oa5	0.4	31.1	57-7	28-}	69-3	D	0.2	21-6	0							
20	0.5-1	0.6	28-8	\$2.5	28.9	68.2	0	0.2	19-6	O							
N	1,5-}	0-2	275	27.5	29.2	78.3	0	0.2	1900	6							W.See
22	5-2-}	6.8	27.2	39.4	28-8	69.4	0	6.7	18.2	0							
								-									
									-								
								-									
10																	
				-													
备注:																	
检测人员:	RAM							现场	确认:	集的							

土壤现场快筛记录表

														_		
./.		/	1.4.	IA B		4								第	页	共门步
·沙特约万备公子	5公司(林	机了到线	对节多	多种 天	1			MA.C.	气压	1	31.2K	pa	采样日	期	2019.	5.20
	PID	仪	器编号		E-1-428	É-1-	[2]	采样	点位	<	8		检测编	号レ	19 stc	179F
采样深度							侧试	项目 (单	单位: pp	m)					* /	
(m)	VOCs	铜 Cu	铬 Cr	镍 Ni	锌 Zn	砷 As	镉 Cd	铅 Pb	汞 Hg	铊Ti	铍 Be	锑 Sb	硒 Se	银 Ag	锡 Sn	锰Mi
oas	1.8	27.1	18.2	27.2	69.2	7.4	0.2	18.9	D							
0-5-/	20	26.5	19.8	27.8	70.2	6.6	0.2	2/0	ō							
14-5	0.)	26.2	17.5	27.5	665	0.8	0.2	18.8	o							
2.5-3	0	26.3	73.0	263	69.3	D	0.2	166	ō							
,		,			,											
		-														
<i>f</i>																
Cont.							现场	确认:	炼料							
	采样深度 (m) 0-05 0-5-/ 1-5-2 2.5}	采样深度 (m) vocs 0-45 1.8 0-5-/ 2.0 115-2 0.1 2.5-3 0	采样深度 (m) VOCs 铜 Cu 0-05 1.8 27.1 0-5-/ 20 26:5 15-2 0.1 26:2 215-3 0 26:3	果样深度 いの VOCs 铜 Cu 铬 Cr のふら 1.8 27.1 58.2 の・5-1 20 26.5 59.8 1パーン 0.1 26.2 57.5 2.5-3 0 26.3 73.0	采样深度 (M) VOCs 铜Cu 铬Cr 镍Ni O.A 5 1.8 27.1 58.2 27.2 0.5-1 20 26.5 19.8 27.8 15-2 0.1 26.2 57.5 27.5 2.5-1 0 26.3 73.0 263	XRF、PID 仪器編号 E-1-4分 XRF、PID 仪器编号 E-1-4分 XRF、PID	XRF、PID 仅器編号 E-1-4以 E-1-4以	XRF、PID 仅器編号 E-1-4以 E-1-4以	果样深度	大学 1 1 1 1 1 1 1 1 1	XRF、PID 仅器編号 E-1-4以 E-1-4以	1. 1. 1. 1. 1. 1. 1. 1.	12 12 12 13 14 14 15 15 15 15 15 15	12 12 12 12 12 12 12 12	第7 12時代 18年 18年	第7页

土壤现场快筛记录表

项目名称	训化的新新	方方司(柳日	4/8/11/9	1/18 53	天	气	10%	气温	W.4°C	气压	10	1.2KPa		采样日	期	2019.5	.20
测量仪器	XRF、1	PID	仪	器编号		E-1-42}	É-1-	627	采样	点位	59			检测编		1519050	
样品编号	采样深度							测试	项目()	单位: pp	m)					1	-
	(M)	VOCs	铜 Cu	铬 Cr	镍 Ni	锌 Zn	砷 As	镉 Cd	铅 Pb	汞 Hg	铊Ti	铍 Be	锑 Sb	硒 Se	银 Ag	锡 Sn	锰Mn
27	0-0.5	1	/	1	1	/	-	,	/	/							
28	0.54	0.6	28-1	71.5	274	66.6	0	0.2	13.5	D							
29	1.5-2	1.8	27.6	t2.8	28-1	68.4	0	0.2	18-6	0							
30	2.5-}	1.0	28.	64.6	27.2	69.2	0	0.2	19.2	0							
31	3,5-4	0.	26.8	19.5	26.8	70.b	o o	0.2	20.7	0							
备注:			*	,				-									
检测人员:	Diff.							现场	确认:	Gito							

土壤现场快筛记录表

项目名称	沙沙沙海	方句は神	红沙地震	排雪出	多种天	Ħ	10%	气温	244°C	气压	1	01.2K	Pa	采样日	第9期	2019.5	共11页
测量仪器	XRF、		仪	器编号		Ε-1- ψΣ	E-1-	q27	采样	点位	51			检测编	号	V75,9:	50179
样品编号	采样深度								项目(自		m)					11	1
	(M)	VOCs	铜 Cu	铬 Cr	镍 Ni	锌Zn	砷 As	镉 Cd	铅 Pb	汞 Hg	铊Ti	铍 Be	锑 Sb	硒 Se	银 Ag	锡 Sn	锰 Mn
32	0-05	0	28.2	62.6	27.9	69.6	0	0.2	18.2	0							
33	0.51	0.2	29.2	58.2	26.6	68.2	0.6	0.2	16.8	0							
34	15:2	0.6	28.4	57.4	26.9	70.2	0	0.7	21.2	O							
35	2.5-3	0.3	27.2	58.9	26.2	68.6	0	0. V	18.4	0							
,			,														
		41															
备注:																	
检测人员:	ASN-							Tiil +Z	7年11	Uh at							
亚奶 / (火):	1894							196.130	确认:	俗话							

土壤现场快筛记录表

						-	-74470	יייייייייייייייייייייייייייייייייייייי	1414								
项目名称	羽湖岩南街	543 Holet	817×1+13	相流人	於 爾 天	气	783/X	气温	2446	气压	101	.2KPa		采样日		可19.5	共用可
测量仪器	XRF.		仪	器编号		E-1- (A)	8 E-1-			点位		511		检测编	早 ,	75190	200
样品编号	采样深度					Ψ-	0			单位: pp		>''		1.92, 15(1-5)	3 V	15170	470
	(m)	VOCs	铜 Cu	铬 Cr	镍 Ni	锌Zn	神 As	镉Cd	铅 Pb	汞 Hg	铊Ti	铍 Be	锑 Sb	硒 Se	银 Ag	锡 Sn	锰Mr
36	0-10.5	1.8	26.2	54.6	27.3	62.3	0	0.2	16.8	0							
37	0.5-1	216	27.4	0.00	26.8	64.6	٥	0.2	18.4	0							
38	1.5-2	4.2	26.8	62.1	29.1	61.6	0	0-1	21.6	0							
39	2.5-3	2.1	28.1	56.6	28-1	61.8	0	0.2	18.2	D							
A 沙																	
备注:	+ .1																
检测人员:	Tak.							现场	确认:	作品							

土壤现场快筛记录表

第上页 共月页

项目名称	江州弘克克斯高克 XRF、F	为公司(制)	订区世榜	湖湾5%	细天	气	PA	气温	24-4 0 采样	气压	/0/.	2 Kpa		采样日		·页 2019·5· 1319050	
测量仪器	XRF. F	PID	仪	器编号		E-1-428	E-1-	427	采样	点位	5	2		检测编	号 (17519 oto	1797
样品编号	采样深度							测试	项目(印	单位: pp	m)					, ,	1
	cm/	VOCs	铜 Cu	铬 Cr	镍 Ni	锌 Zn	砷 As	镉 Cd	铅 Pb	汞 Hg	铊Ti	铍 Be	锑 Sb	硒 Se	银 Ag	锡 Sn	锰Mn
40	Tiena	1.7	27.0	79.7	27.3	117.3	0	az	17.9	0							
4241	6004	16.9	26-7	79.7 62.4	25.5	836	1.3		27.7	O							
W	15-5	16.9 4.6 0.4	27.2	7.07	27.7	836 75-8	12-	0.2		0							
44	715-3	0.4	26.8	50.7	29.3	70.7	0.6	0.2	2/10	0							
	/				/												
												-					
																-	
备注:																	
检测人员:	A. U							II7 47.	7th 2 1	/1							
似侧八贝:	18gh							现场	确认:	7/0							

土壤采样现场记录单

				游游骑骑祠亦	MUTE					第 /]	页 共 川
检测编	号	J90501797	项目名称	七葉排電台 監測		天气	PH	温度	24. K	湿度	23.2
采样点	位	5/	点位坐标	N 3174614-08"	E	117 12'5	7.09"	采样	日期	2019.	5.20
羊品编号	采样深	度	. 检测项目		7.07057	上壤性状描述	走 /		土月	层描述	
	(m)	pu、研、编:	研究、公司、谷心、	L.解. WUS(27)版)	颜色	质地	湿度				
1	ar.				棕黑	勃旗土	翔子和	0-0-3	in t	深. 3	模
								~			
备注:						•					
采样人员	1: 7	34			审核人:	语格					

土壤采样现场记录单

检测组	- '	7519050179E	可目名称 对塞排查分给	क्रम द ने जी स				3	产 2 页	.tt: r
采样点	i fiz	53	CICIALATE N 210 WILL	1801	天气	NE	温度	W. 4°	湿度	
样品编号	采样深度 (m)		点位坐标 N 3/°46′22.3		// プ/}′ 土壤性状描	05.23"	采样上	山期	20195	12.01
2	0-0.5	PH. 石中、锅、大分	统领、统文统、通知	颜色	质地	湿度		土层扫	苗述	
3	0.5-1	4206 (1123)	13 . 707 1 KZ ((10-140)	111	和道	7	0-0.2m	trit - 6	1	
4	1.5-2	1	19781 FZ (C10-C40)	榜菱	奉红	790	0-0.2m 0->-05m at-0.8m	(1) 天 1人/	% + 1<	
5	2.5-3			精黄	秦台1	-BA	a5-08m =	紅 榜	黄	
0	1.54			te	建台土	700	a8-1 m 7	萨漠 杉	菠	
				t.pc	教士	清料	1-2m 3	战 榜	菱	
							1-2m \$	ext to	_	
ržE:										
样人员:	ZEA.									
	100			审核人:	: 514					

UIS

土壤采样现场记录单

					沙海等有两多多分分百	(献花)百)				第 4 页 共
检测编	号	47519	050179E	项目名称	女教教育5 第 in	1	天气	MA	温度 24-4	で 湿度 32%
采样点	位		55	点位坐标	N 71028 31°46' 3	3.15" E	117.13.	66.677	采样日期	2019.5.20
样品编号	采样沒			检测项目	ty 84-		上壤性状描述		£	:层描述
IT HHOM J	(m)			157.047%		颜色	质地	湿度		
7	0-0.	.5	から、万中、全部、	水价铬、针	小轮录、强	棕黄	泰比	湧	0-m 核黄	泰红(夹灰)
8	0.5	1	(DCs (2722)	·加克勒、大价势、钼、缩汞、镍 (s (27)克),SWC (112克)、含苯	为)、守孝	棕黄	墨紅	强	W 11.7	765 八八
9	1.50	.2				黄棕	黏红	海A	1-3m 黄棕	泰红侠灰
10	2.5	-3			黄棕	秦紅	須			
备注:							1			
采样人员	: 7	Val	,			审核人:	游传			

土壤采样现场记录单

						议论的病毒等	的公司和花	761			1	第 /人页	共川
检测编	号 (w751	905017	97	项目名称	土壤排雪5岁	TR I	天气	182	温度	24.48	湿度	共 川 以ル%
采样点	位		54		点位坐标	N 31046' 20.05	11 E	1708'02	.03"	2.5	日期	2019.	
样品编号	采样深	度			检测项目		Ł	壤性状描:	述			描述	
11	(m)	_		7		, -	颜色	质地	湿度				
	2.00						棕黄	表达	13N	0-0.5 V	n 棕菱	差社	
12	0.5-1					11、华	青庆	塞紅	3年A	0.5-) n	* 表生	表红	
[}	1.5-2		pH·勃3·莽、石中、台南、钴·台京、 刘维 WU(5(272页)、 5 WL [112页]、 字 石油片(C10-C40)				青灰	泰红	净用	2-3m	有核	A.T.	
14	2.5-1	5		4(272页)、5101(112页)、拿			黄棕	基红	滇川	0-0.5v 0-5-)n 2-3m	7.4	get I	
		-		1									
	-												
		_											
备注:		4	. /										
采样人员	· 0	82	7				审核人:	japes					

土壤采样现场记录单

					心物特局方方方	司体好る	:/			角	5页	共川
检测编	号	W16190501	79E	项目名称	北京排查5岁m		天气	鸣	温度	may°C	湿度	23.2%
采样点	位	56		点位坐标	N31046' 19.03"	Εſ	170131	10.9611	采札	羊日期	>0	9.5.20
样品编号	采样深			检测项目			壤性状描述	1		土层		/ -
	(m)					颜色	质地	湿度				
15	0-0.	5 PH. QI	3. 汞、石中	、编、张、学	集、六個名	松黄	泰红	預	0.10	+ 2 基 至	e but	
16	0.5-	1 10	(4 (27 27	21. 5006	(12克)、鲜	棕黄	黏土	沙草州	0-/1.	、 棕菱系 × 養 秀	10	
[]	1-5-			X-100-041		黄	黏土	神	1-3n	n奏者	ist	
18	2.5	-3				黄黄	泰古士 泰古士	海风				
							4112					
备注:							-					
采样人员	. 7	3/4				审核人:	1500					

土壤采样现场记录单

					洲的特局者给有司	AMENTE,	,			3	· 6页 共)	1 :
检测编	号 1	175190	50179E	项目名称	技好時多當哪		天气	MA	温度	29 4°C	湿度 ン}、	2%
采样点	位		5]	点位坐标	N 31046'17.68'	E ,	170131	3. 85"	采栏	f 日期	2-19.5.20	
样品编号	采样深	度		检测项目			- 壤性状描述			土层	2019、5、20 描述	
	(m)			压 (4-火口		颜色	质地	湿度				
19	0-00				课、大师经	榜菱	杂真	Ŧ	0-0.5	m 彩填	樗葵	
vo	0.5-1		1065 (272k)	Svo [cli)	死)、 往	棕黄	泰村	弹A	0.5-29		棺类	
VI	1.5-2	-			- 1	法扶	杂填	湾用	0 4 - 2 n			
22	25-1)				技友	黏土	331		~ 雜	15 M	
									1-4 m	第1	100	
备注:												
采样人员	: 1	强.				审核人:	1812					

上壤采样现场记录单

			沙州东北海南省分	12 githery	181		5	第7页共川		
检测编	号 7	175190501798	项目名称土壤排毒分党派		天气	15%	温度 ルチル	湿度 27.2%		
采样点	位	58	点位坐标 N 3/°46′16.12	ь Е	117013'	11.39 "	采样日期	2019,5.20		
样品编号	品编号 采样深度		检测项目	. =	土壌性状描述		土层描述			
- 2	(m)	/ A.D. 7. a	5 h A 7 . A 5	颜色	质地	湿度	<i>f</i>			
23	0-0.		油输、铅、镍、六价铁		十.	0-0.5 m Rts	生 残灰			
24	0-7-	and the second s	· SUOL (1122), 93	涉灰	泰红	河外	0.5-/.Im	A ST		
25	1.5-7			棕黄	装土	海人	0-0.5m 杂枝 0.5-/.1m 1.1- }m 樗荑	FA.K+		
26	2,5-	3		大家黄	基社	= FA	1.1 1	450-		
					,	,				
								5		
备注:										
采样人员	: 1	A.		审核人:	销化					

土壤采样现场记录单

					江淮流裔各分	可纳城	(6)			4	⋾分 页	共 //	
检测编	号	47519050	1798	项目名称	土均精 5岁~		天气	好教	温度	244°	湿度	23,2%	
采样点	位	50	j	点位坐标	N 310 46'14 12"		7°13' 14.		采栏	羊日期	20190		
样品编号	采样资	288.32		检测项目			壤性状描述			土层			
	(m)			TE OUT OF	颜色	质地	湿度						
דע	0-01	PH. 9	日.汞、神	霜,给,	集、大价钱	/	70816	1	0-0.5	m 石草的	٢		
28	0.5-	1 1	Ls (272/2), 4WCc	112页)、纤	棕菱	差b土	强	0.5-1m 棕菱菱红 1-4m 棕灰菱红				
29 1-1512						棕灰	表出	朔	1-4 m	EGL			
30	2.5-	3				棕灰	秦5十	河南		1	1 42		
31	3.5-	4				棕灰	表生	項刊					
							,						
备注:													
采样人员	: 7	强人			4.	审核人:	行物						

土壤采样现场记录单

			的批选为商务分	SOCHER D	·)			\$	9页	共	ij
检测编	号 (15190501792	项目名称 打動排查5 溢加	21	天气-	两	温度	Ne4°C	湿度	2/2%	
采样点	位	510	点位坐标 N 31° 46′11.)6	E	7°13'17	7111	采样	日期	2019.		
样品编号	采样深	度	检测项目		- 壤性状描述			土层			
	(m)		ET A. M. H.	颜色	质地	湿度					
32	0.5-	PH.全局、永.不可	、导角、智、军、大价格。	榜装	泰社	林阳	0-0.5 N 0-5-4M	不要代	J		
33	1.5-1		5001(112页)、全章	榜奏	泰五	3章A	0.5-4m	表出	楼装		
34	2.5-}	-		村学葵	黏土	神		2/1/2	12%		
35	3.5- (f		村家	奉七	海月					
											İ
备注:	l.		¥.								1
采样人员	:	流		审核人:	族陽						1

土壤采样现场记录单

					了沙沙沙海南南方方	6 Transfer 2	·s)				第 / 2 引	英共 川
检测编	号	w/519	501797	项目名称	土壤排香与治	न्हा	天气	15 %	温度	24.4°		23.2%
采样点	位		511	点位坐标	N 31046'16.68	H E /	701312	- fil	采样日			5120
样品编号	采样落	200000000		检测项目		土	壤性状描述		2.70,7		描述	13120
0.000	(m)	-	DO DOMESTIC NAME OF			颜色	质地	湿度				
36	0-0.		小铜永湖	、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	x, XMT学	棕灰	范6土 海A	海	a-rat m	101	ž tr	
37	8 1.5-2		vol4 (2727)	. 4vol 1112à	1. 63	棕灰棉	建生	李月	- (- (北京	和一	
38						棕黃	强红		0-0.5 m 0.5-1m 1-3m	加州	7.62	
39	25-3					棕黄	黏红	3517	1-5m	移奏	能过	
						1,4,1,	**	1411				
									-			
备注:												
采样人员	. 🐧	32/k	,			审核人:	福港。					

土壤采样现场记录单

检测编	l号	17519050	1792		15	目名称	Ħ	准汽桶等5分点 囊排查5°监训		天气	nop	温度	244°C	第 [] 页 湿度		
采样点	201000		, 2					3/ 96/22-46"	-	1793'00-	-		プルマ し		23.2%	
羊品编号	采样沒	Section 1				检测项目				選性状描.		70.7	土层	2019.J 描述	. 10	
	(m)	_						颜色	质地	湿度						
40	0-01	OUT PH. 9/11, 7.				五.耐、锅、称、绿、大价铬				泰拉	诗州	0-0.1	7	7		
	41 0.5-1		いしら(272次)、500(1112次)、分享						核核	和土	动	,-	0.05m 棕荑 囊红 0.5-3m 菱棕、麓红			
42	7-4	152							教育	黏土	神	0.5	m 多本	る、たち	L	
43	1.5-	3							梦	港社	ìŚĄ			•		
备注:																
采样人员	: T	录							审核人:	Tiga,						

地下水采样原始记录单

第 | 页 共 | 页 受检单位名称 引进汽车高行公司(林托丁区)扩东那重与签加 检测编号 采样日期 W7419050179E 2009.5.22 天气状况 环境温度(℃) 31.6 相对湿度(%) 36.2% 大气压(kPa) 100.8 监测依据 地下水环境检测技术规范 HJ/T 164-2004 测点 现场监测记录 采样 样品 采样 点位名称 深度 监测项目 时间 容器 水位 水温 电导率 DO 浑浊度 (m) 臭和味 pН (m) (°C) (mg/L) $(\mu s/cm)$ 氢氢素化的、直轮物、 1.67 15:28 2.17 P.G W 7.18 16.2 866 3.21 五元为100年、元月100年 WZ 1.50 15:42 2.00 P.G 1 7.26 548 3.46 17.1 能, 承、石中、杨、纸卷 3.13 WZ 15:53 3.63 PiG 7.10 16.8 436 4.08 吸收到更好 16:06 2.64 P.G 1 162 2.14 7.34 16.4 3.72 104 16:23 3.10 1.6 16.9 2.60 7.22 811 2.88 15:42 2000 平行样 10/2 1.50 1.6 / 7.25 17.1 3.45 150 KB3 1 邻游台后 484 今度注:E-1-355 使增充溶解乳分析仪:E-1353. 使指致电子分仪:E-1435 现场情况描述: 保格 采样人员: 审核人:

UTS-FM-EHS-583/4.0

附件7检测资质

1.CMA 资质

检验检测机构资质认定证书

证书编号: 181012050141

名称: 江苏省优联检测技术服务有限公司

地址: 苏州市吴中区越溪街道北官渡路 50 号 3 幢 (注册、办公) (215104)

经审查, 你机构已具备国家有关法律、行政法规规定的基本条件和能力, 现予批准, 可以向社会出具具有证明作用的数据和结果, 特发此证。资质认定包括检验检测机构计量认证。

检验检测能力及授权签字人见证书附表。

你机构对外出具检验检测报告或证书的法律责任,由 江苏省优联检测技术服务有限公司承担。

许可使用标志

MA

181012050141

发证日期: 2018 条 35

有效期至: 2024

发证机关:

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效

0000536

2.CNAS 认证证书

中国合格评定国家认可委员会

实验室认可证书

(注册号: CNAS L3223)

兹证明:

江苏省优联检测技术服务有限公司

江苏省苏州市吴中区越溪街道北官渡路 50 号 3 幢, 215128

符合 ISO/IEC 17025: 2005《检测和校准实验室能力的通用要求》 (CNAS-CL01《检测和校准实验室能力认可准则》)的要求,具备承担本证书附件所列服务能力,予以认可。

获认可的能力范围见标有相同认可注册号的证书附件,证书附件是 本证书组成部分。

签发日期: 2017-03-29 有效期至: 2019-01-21 初次认可: 2007-11-06

中国合格评定国家认可委员会授权人

其建华

中国合格评定国家认可委员会(CNAS)经国家认证认可监督管理委员会(CNCA)授权,负责实施合格评定国家认可制度。 CNAS是国际实验室认可合作组织(ILAC)和亚太实验室认可合作组织(APLAC)的互认协议成员。 本证书的有效性可登陆www.cnas.org.cn获认可的机构名录查询。

China National Accreditation Service for Conformity Assessment LABORATORY ACCREDITATION CERTIFICATE (Registration No. CNAS L3223)

United Testing Services(Jiangsu) Co., Ltd.

Building 3, No.50, Beiguandu Road, Yuexi Street, Wuzhong District, Suzhou, Jiangsu, China

is accredited in accordance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence to undertake the service described in the schedule attached to this certificate.

The scope of accreditation is detailed in the attached schedule bearing the same registration number as above. The schedule form an integral part of this certificate.

Date of Issue: 2017-03-29 Date of Expiry: 2019-01-21

Date of Initial Accreditation: 2007-11-06

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment(CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is a signatory of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and the Asia Pacific Laboratory Accreditation Cooperation Mutual Recognition Arrangement (APLAC MRA). The validity of the certificate can be checked on CNAS website at http://www.enas.org.cn/english/findanaccreditedbody/index.shtml

附件8 检测能力表

资质认定

计量认证证书附表

181012050141

机构名称: 江苏省优联检测技术服务有限公司

发证日期: 2018年3月8日

有效日期: 2024年3月7日

发证单位: 江苏省质量技术监督局

国家认证认可监督管理委员会编制

第1页共1页

批准的授权签字人

名称: 江苏省优联检测技术服务有限公司 地址: 苏州市吴中区越溪街道北官渡路 50 号 3 幢

字号	姓名	职务/职称	授权签字领域	备注
1	朱学惠	技术负责人/工程师	批准认定的环境(含水和废水、空气和废气(含室内空气)、固体废弃物/危险废物、土壤、电离辐射、噪声与振动)、农林土壤、城市污泥、工作场所、公共卫生、生活饮用水/地下水项目	
2	方玲	技术主管/工程师	批准认定的环境(含水和废水、空气和废气(含室内空气)、固体 废弃物/危险废物、土壤、电离 辐射、噪声与振动)、农林土壤、 城市污泥、工作场所、公共卫生、 生活饮用水/地下水项目	
3	邢艳秋	副经理/工程师	批准认定的工作场所、公共卫 生项目	
4	李堃	评价部主管/视为同等能力	批准认定的工作场所、公共卫 生项目	
5	刘贵宁	副经理//工程师	批准认定的金属及金属制品 (含化学成分、力学性能、金相 检验、机械零件)、橡胶塑料产 品、电工电子产品、轨道交通 产品、道路车辆零部件项目	
6	张军	可靠性主管/视为同等能力	批准认定的金属及金属制品 (含化学成分、力学性能、金相 检验、机械零件)、橡胶塑料产 品、电工电子产品、轨道交通 产品、道路车辆零部件项目	
7	刘之波	无损检测主管/工程师	批准认定的无损检测项目	

以下空白

批准的检验检测能力表

第 1 页 共 43 页

- H	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围 及说明
序号	项目/参数)	序号	名称	及编号(含年号)	
_	环境				
		1	(总)氰化物	水质 氰化物的测定 容量法和分光光度 法 HJ 484-2009	N. S.
				水质 pH 值的测定玻璃电极法 GB/T 6920-1986	
		2	pH 值	便携式 pH 计法《水和废水监测分析方法》 第四版增补版(国家环保总局)(2002 年)3.1.6.2	
		3	氨氮	水质氨氮的测定纳氏试剂分光光度法 HJ 535-2009	
		4	臭	文字描述法《水和废水监测分析方法》第 四版增补版(国家环保总局)(2002年) 3.1.3.1	
		5 电导率 水和废水		便携式电导率仪法《水和废水监测分析方法》第四版增补版(国家环保总局)(2002	
1	水和废水		5 电导率	年)3.1.9.1 实验室电导率仪法《水和废水监测分析方 法》第四版增补版(国家环保总局)(2002 年)3.1.9.2	仅做异烟酸-叫唑啉酮分光光度法
		6	石油类	水质 石油类和动植物油类的测定 红外 光度法 HJ 637-2012	
		7	动植物油	水质 石油类和动植物油类的测定 红外 光度法 HJ 637-2012	
		8	二氧化氯	水质 二氧化氯和亚氯酸盐的测定 连续 滴定碘量法 HJ 551-2016	
		9	高锰酸盐指数	水质 高锰酸盐指数的测定 GB/T 11892-1989	
		10	化学需氧量	水质 化学需氧量的测定 重铬酸盐法 HJ 828-2017	
		11	挥发酚	水质 挥发酚的测定 4-氨基安替比林分 光光度法 HJ 503-2009	
		12	碱度	酸碱指示剂滴定法《水和废水监测分析方法》第四版增补版(国家环保总局)(2002年)3.1.12.1	

第 2 页 共 43 页 附 2

批准的检验检测能力表

J. 11	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围 及说明
序号	项目/参数)	序号	名称	及编号 (含年号)	
		13	硫化物	水质 硫化物的测定 亚甲基蓝分光光度 法 GB/T 16489-1996	仅做沉淀分离 法
		14	六价铬	水质 六价铬的测定 二苯碳酰二肼分光 光度法 GB/T 7467-1987	
		15	全盐量	水质 全盐量的测定 重量法 HJ/T 51-1999	
		16	溶解氧	水质 溶解氧的测定 碘量法 GB/T 7489-1987 水质 溶解氧的测定 电化学探头法 HJ 506-2009	
		17	色度	水质 色度的测定 GB/T 11903-1989	
		18	五日生化需氧量	水质 五日生化需氧量 (BOD ₅) 的测定 稀 释与接种法 HJ 505-2009	
		19	硝酸盐氮	水质 硝酸盐氮的测定 酚二磺酸分光光度法 GB/T 7480-1987 水质 硝酸盐氮的测定 紫外分光光度法 (试行) HJ/T 346-2007	
		20	悬浮物	水质 悬浮物的测定 重量法 GB/T 11901-1989	
1	水和废水	21	亚硝酸盐氮	水质 亚硝酸盐氮的测定 分光光度法 GB/T 7493-1987	
		22	阴离子表面活 性剂	水质 阴离子表面活性剂的测定 亚甲蓝 分光光度法 GB 7494-1987	
		23	游离氯	水质 游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 HJ 585-2010	
				水质 浊度的测定 GB/T 13200-1991	仅做分光光度 法
		24	浊度	便携式浊度计法《水和废水监测分析方法》第四版增补版(国家环保总局)(2002年)3.1.4.3	
		25	总氮	水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法 HJ 636-2012	
		26	总磷	水质 总磷的测定 钼酸铵分光光度法 GB/T 11893-1989	
		27	总氯	水质 游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 HJ 585-2010	
		28	总硬度	水质 钙和镁总量的测定 EDTA 滴定法 GB/T 7477-1987	
		29	钡	水质 钡的测定 石墨炉原子吸收分光光度法 HJ 602-2011	

第 3 页 共 43 页

批准的检验检测能力表

J. 17	类别(产品/	产品	/项目/参数	依据的标准 (方法) 名称	限制范围
序号	项目/参数)	序号	名称	及编号(含年号)	及说明
		30	汞	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	
		31	砷	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	
		32	硒	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	
		33	铋	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	
		34	锑	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	
		35	钒	水质 钒的测定 石墨炉原子吸收分光光 度法 HJ 673-2013	
		36	氟化物	水质 氟化物的测定 离子选择电极法 GB/T 7484-1987 水质 无机阴离子(F、Cl、NO ₂ 、Br、NO ₃ 、 PO ₄ ³ 、SO ₃ ² 、SO ₄ ²) 的测定 离子色谱法 HJ 84-2016	
1	水和废水	37	镉	石墨炉原子吸收法《水和废水监测分析方法》第四版增补版(国家环境保护总局)(2002年)3.4.7.4 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987	仅做直接法
		38	可吸附卤素 (AOX)	水质可吸附有机卤素(AOX)的测定离子色谱法 HJ/T 83-2001	
		39	硫酸根	水质 无机阴离子(F、C1、NOz、Br、NOs、 PO4 ³ 、SOs ² 、SO4 ²) 的测定 离子色谱法 HJ 84-2016	
		40	氯离子	水质 无机阴离子(F、C1、NO ₂ 、Br、NO ₃ 、PO ₄ ³ 、SO ₅ ² 、SO ₄ ²) 的测定 离子色谱法 HJ 84-2016	
		41	硝酸根	水质 无机阴离子(F、C1、NO ₂ 、Br、NO ₃ 、PO ₄ ³ 、SO ₂ ² 、SO ₄ ²) 的测定 离子色谱法 HJ 84-2016	
		42	铍	水质 铍的测定 石墨炉原子吸收分光光度法 HJ/T 59-2000	
		43	铅	石墨炉原子吸收分光光度法《水和废水监测分析方法》第四版增补版(国家环境保护总局)(2002年)3.4.16.5	
				水质 铜、锌、铅、镉的测定 原子吸收 分光光度法 GB/T 7475-1987	仅做直接法

第 4 页 共 43 页

批准的检验检测能力表

TI	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围
序号	项目/参数)	序号	名称	及编号(含年号)	及说明
		44	锌	水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987	仅做直接法
		45	铟	石墨炉原子吸收法《水和废水监测分析方法》第四版增补版(国家环境保护总局)(2002年)3.4.21	
		46	银	水质 银的测定 火焰原子吸收分光光度 法 GB/T 11907-1989	
		47	挥发性有机物	水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012	测 57 种物质具 体参数详见注
		48	半挥发性有机 物	气相色谱-质谱法《水和废水监测分析方法》第四版增补版(国家环境保护总局)(2002年)4.3.2	测 50 种物质具体参数详见注意
		49	有机氯农药和 氯苯类化合物	水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法 HJ 699-2014	测 34 种物质具体参数详见注:
		50	多氯联苯	水质 多氯联苯的测定 气相色谱-质谱法 HJ 715-2014	仅做液液萃取, 测 18 种物质具 体参数详见注
		51	多环芳烃	水质 多环芳烃的测定 液液萃取和固相 萃取高效液相色谱法 HJ 478-2009	仅做液液萃取, 测 16 种物质具 体参数详见注
1	水和废水	52	苯系物(苯、甲苯、邻二甲苯、对二甲苯、 间二甲苯、乙苯、苯乙烯)	水质 苯系物的测定 气相色谱法 GB/T 11890-1989	
		53	丙烯腈	水质 丙烯腈的测定 气相色谱法 HJ/T 73-2001	
		54	滴滴涕	水质 六六六、滴滴涕的测定 气相色谱法 GB/T 7492-1987	
		55	敌百虫	水质 有机磷农药的测定 气相色谱法 GB/T 13192-1991	
		56	敌敌畏	水质 有机磷农药的测定 气相色谱法 GB/T 13192-1991	
		57	对硫磷	水质 有机磷农药的测定 气相色谱法 GB/T 13192-1991	
		58	甲基对硫磷	水质 有机磷农药的测定 气相色谱法 GB/T 13192-1991	
		59	甲基汞	环境 甲基汞的测定 气相色谱法 GB/T 17132-1997	
		60	甲醛	水质 甲醛的测定 乙酰丙酮分光光度法 HJ 601-2011	

第 5 页 共 43 页 附 2

批准的检验检测能力表

	类别(产品/	产品	品/项目/参数	依据的标准(方法)名称 及编号(含年号)	限制范围
序号	项目/参数)	序号	名称		及说明
		61	乐果	水质 有机磷农药的测定 气相色谱法 GB/T 13192-1991	
		62	六六六	水质 六六六、滴滴涕的测定 气相色谱法 GB/T 7492-1987	
		63	马拉硫磷	水质 有机磷农药的测定 气相色谱法 GB/T 13192-1991	
		64	三氯乙醛	水质三氯乙醛的测定吡唑啉酮分光光度 法 HJ/T 50-1999	
		65	烷基汞	水质 烷基汞的测定 气相色谱法 GB/T 14204-1993	
		66	水温	水质 水温的测定 温度计或颠倒温度计测定法 GB/T 13195-1991	仅做温度计法
		67	丙烯酰胺	水质 丙烯酰胺的测定 气相色谱法 HJ 697-2014	
		68	丁基黄原酸	水质 丁基黄原酸的测定 紫外分光光度 法 HJ 756-2015	
		69	松节油	水质 松节油的测定气 相色谱法 HJ 696-2014	
1	水和废水	70	邻苯二甲酸二 甲(二丁、二 辛)酯	水质 邻苯二甲酸二甲 (二丁、二辛) 酯 的测定 液相色谱法 HJ/T72-2001	仅做液液萃取 法
		71	矿化度	《水和废水监测分析方法》第四版增补版 (国家环保总局) (2002年) 3.1.8	
		72	叶绿素 a	分光光度法《水和废水监测分析方法》第 四版增补版(国家环境保护总局)(2002 年)5.1.5	
		73	水质透明度	塞氏盘法《水和废水监测分析方法》第四版增补版(国家环境保护总局)(2002年)3.1.5.2	
		74	银硼铋钴铁镁钠铅硅钛铝钡钙铬钾锰镍锑锡钒锆砷铍镉铜锂钼磷硒锶锌	水质 32 种元素的测定 电感耦合等离子体发射光谱法 HJ 776-2015	

第6页共43页

批准的检验检测能力表

et 0	类别(产品/	产	品/项目/参数	依据的标准 (方法) 名称	限制范围
序号	项目/参数)	序号	名称	及编号(含年号)	及说明
		75	苯酚、2-氯酚、3-甲酚、2,4-二甲酚、2-硝基酚、2,4-二氯酚、4-氯酚、4-氯酚、2,4,6-三氯酚	水质 酚类化合物的测定 液液萃取/气相 色谱法 HJ 676-2013	
1	水和废水	76	肼	水质 肼和甲基肼的测定 对二甲氨基苯甲醛分光光度法 HJ 674-2013	
		77	丙烯腈和丙烯 醛	水质 丙烯腈和丙烯醛的测定 吹扫捕集/ 气相色谱法 HJ 806-2016	
				河流流量测验规范 GB 50179-2015	仅做流速仪法
		78	流速	水污染物排放总量监测技术规范 HJ/T 92-2002	仅做流速仪法
		79	《水和废水监测分析方法》第四版增补	《水和废水监测分析方法》第四版增补版 (国家环保总局) (2002年)3.1.10	
		80	氨	环境空气和废气 氨的测定 纳氏试剂分 光光度法 HJ 533-2009	
		81	苯胺类	空气质量 苯胺类测定 盐酸萘乙二胺分 光光度法 GB/T 15502-1995	
2	空气和废气(含室内空气)	82	氮氧化物	固定污染源排气中氮氧化物的测定 盐酸 萘乙二胺分光光度法 HJ/T 43-1999 环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法 HJ 479-2009 固定污染源排气氮氧化物的测定 酸碱滴定法 HJ 675-2013 固定污染源废气氮氧化物的测定 定电位电解法 HJ 693-2014	
		83	恶臭	空气质量 恶臭的测定 三点比较式臭袋 法 GB/T 14675-1993	
		84	二氧化氮	环境空气 二氧化氮的测定 Saltzman 法 GB/T 15435-1995	
		85	二氧化硫	固定污染源废气 二氧化硫的测定 定电位电解法 HJ 57-2017 环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法 HJ 482-2009 固定污染源排气中二氧化硫的测定 碘量法 HJ/T 56-2000	

第7页共43页

批准的检验检测能力表

d D	类别(产品/	产品	品/项目/参数	依据的标准(方法)名称 及编号(含年号)	限制范围
序号	项目/参数)	序号	名称		及说明
SHE SHEET REPORTED TO		86	酚类化合物	固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法 HJ/T 32-1999	
		87	铬酸雾	固定污染源排气中铬酸雾的测定 二苯基 碳酰二肼分光光度法 HJ/T 29-1999	
		88	颗粒物	固定污染源排气中颗粒物测定与气态污染物采样方法 GB/T 16157-1996	
		89	可吸入颗粒物 (PM ₁₀)	环境空气 PM ₁₀ 和 PM _{2.5} 的测定重量法 HJ 618-2011 室内空气中可吸入颗粒物卫生指标 GB/T 17095-1997	
		90	硫化氢	亚甲基蓝分光光度法《空气和废气监测分析方法》第四版增补版(国家环保总局) (2007年)5.4.10.3	
		91	硫酸雾	固定污染源废气 硫酸雾的测定离子色谱法 HJ 544-2016 硫酸浓缩尾气硫酸雾测定 铬酸钡比色法 GB/T 4920-1985	
	空气和废气	92	氯气	固定污染源排气中氯气的测定 甲基橙分 光光度法 HJ/T 30-1999	
2	(含室内空气)	93	氰化氢	固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法 HJ/T 28-1999	
		94	细颗粒物 (PM _{2.5})	环境空气 PM ₁₀ 和 PM _{2.5} 的测定重量法 HJ 618-2011	
		95	烟尘	锅炉烟尘测试方法 GB 5468-1991	
		96	沥青烟	固定污染源排气中沥青烟的测定重量法 HJ/T 45-1999	
		97	一氧化碳	定电位电解法《空气和废气监测分析方法》第四版增补版(国家环境保护总局) (2007年)5.4.11.2 空气质量一氧化碳的测定非分散红外法	
		98	饮食业油烟	GB 9801-1988 饮食业油烟排放标准 GB 18483-2001 附录 A	
		99	总悬浮颗粒物	环境空气总悬浮颗粒物的测定 重量法 GB/T 15432-1995	
		100	氟化物	大气固定污染源氟化物的测定 离子选择 电极法 HJ/T67-2001 环境空气 氟化物的测定 滤膜采样氟离 子选择电极法 HJ 480-2009	

第 8 页 共 43 页

批准的检验检测能力表

	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围
序号	项目/参数)	序号	名称	及编号(含年号)	及说明
		101	银钡钙铬钾钠锑钛、铝铍镉铜镁镍锡钒、 研铋钴铁锰铅锶锌 建物银铁	空气和废气颗粒物中金属元素的测定 电感耦合等离子体发射光谱法 HJ 777-2015	
		102	镉及其化合物	大气固定污染源镉的测定 火焰原子吸收分光光度法 HJ/T 64.1-2001 大气固定污染源镉的测定 石墨炉原子吸收分光光度法 HJ/T 64.2-2001	
		103	氯化氢	环境空气和废气 氯化氢的测定 离子色 谱法 HJ 549-2016 固定污染源废气 氯化氢的测定 硝酸银容量法 HJ 548-2016 固定污染源排气中氯化氢的测定硫氰酸 汞分光光度法 HJ/T27-1999	
2	空气和废气 (含室内空 气)	104	镍及其化合物	大气固定污染源镍的测定 火焰原子吸收 分光光度法 HJ/T 63. 1-2001 大气固定污染源镍的测定 石墨炉原子吸 收分光光度法 HJ/T 63. 2-2001	
		105	铍及其化合物	固定污染源废气铍的测定 石墨炉原子吸收分光光度法 HJ 684-2014	
	2		铅及其化合物	固定污染源废气铅的测定(暂行)火焰原子吸收分光光度法 HJ 538-2009环境空气铅的测定 石墨炉原子吸收分光光度法 HJ 539-2015固定污染源废气 铅的测定 火焰原子吸收分光光度法 HJ 685-2014	
	原子荧光法《空气和废气》 第四版增补版(国家环境保 年)3.2.6.4 原子荧光分光光度法《空华析方法》(第四版)国家环题	原子荧光法《空气和废气监测分析方法》 第四版增补版(国家环境保护总局)(2007			
		108	硒及其化合物	原子荧光法《空气和废气监测分析方法》 第四版增补版(国家环境保护总局)(2007 年)3.2.6.4	
		109	锡及其化合物	大气固定污染源 锡的测定 石墨炉原子 吸收分光光度法 HJ/T 65-2001	

第 9 页 共 43 页 附 2

批准的检验检测能力表

序号	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围
^{丹亏} 项目	项目/参数)	序号	名称	及编号(含年号)	及说明
		110	苯系物(苯、甲苯、二甲苯、乙苯、异丙苯、苯乙烯)	环境空气苯系物的测定活性炭吸附-二硫 化碳解吸-气相色谱法 HJ 584-2010 环境空气苯系物的测定固体吸附/热脱附 -气相色谱法 HJ 583-2010	
		111	苯系物(苯、 甲苯、二甲苯)	居住区大气中苯、甲苯和二甲苯卫生检验标准方法气相色谱法GB/T 11737-1989	
		112	苯	民用建筑工程室内环境污染控制规范 GB 50325-2010 (2013 年版) 附录 C	
		113	苯并[a]芘	环境空气 苯并[a]芘的测定 高效液相色 谱法 GB/T 15439-1995	
		114	丙酮	居住区大气中甲醇、丙酮卫生检验标准方法 气相色谱法 GB 11738-1989	
		115	二甲二硫	空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法 GB/T 14678-1993	/200
		116	非甲烷总烃	固定污染源废气 总烃、甲烷和非甲烷总 烃的测定 气相色谱法 HJ 38-2017	
2	空气和废气 (含室内空 气)	(含室内空	甲醇	固定污染源排气中甲醇的测定 气相色谱法 HJ/T 33-1999 居住区大气中甲醇、丙酮卫生检验标准方法 气相色谱法 GB/T 11738-1989	
		118	甲硫醇	空气质量 硫化氢、甲硫醇、甲硫醚和二 甲二硫的测定气相色谱法 GB/T 14678-1993	
		119	甲硫醚	空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法 GB/T 14678-1993	
		民用建筑工程室内环境污染 50325-2010 (2013 年版) 室内空气质量标准	民用建筑工程室内环境污染控制规范 GB 50325-2010 (2013 年版) 附录 G 室内空气质量标准 GB/T18883-2002 附录 C		
		121	总烃、甲烷和 非甲烷总烃	环境空气 总烃、甲烷和非甲烷总烃的测定直接进样-气相色谱法 HJ 604-2017	,
		122	氡 ²²² Rn	民用建筑工程室内环境污染控制规范 GB 50325-2010 (2013 年版)	仅做连续测 仪法
		123	六价铬	二苯碳酰二肼分光光度法《空气和废气监测分析方法》第四版增补版(国家环境保护总局)(2007年)3.2.8	
		124	林格曼黑度	固定污染源排放烟气黑度的测定 林格曼烟气黑度图法 HJ/T 398-2007	

第 10 页 共 43 页

批准的检验检测能力表

. П	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围
序号	项目/参数)	序号	名称	及编号(含年号)	及说明
	13M PREMIED (250,250,616-0-14)	125	臭氧	臭氧的测定 靛蓝二磺酸钠分光光度法 HJ 504-2009	
				环境空气 挥发性有机物的测定 吸附管 采样热脱附/气相色谱-质谱法 HJ 644-2013	做 35 种物质具 体参数详见注 6
		126	挥发性有机物	固定污染源废气 挥发性有机物的测定 固相吸附-热脱附 / 气相色谱-质谱法 HJ 734-2014	做 24 种物质具 体参数详见注 7
				泄漏和敞开液面排放的挥发性有机物检测技术导则 HJ 733-2014	
		127	醛酮类	环境空气 醛、酮类化合物的测定 高效液 相色谱法 HJ 683-2014	
		128	汞及其化合物	原子荧光分光光度法《空气和废气监测分析方法》(第四版)国家环境保护总局(2007年)5.3.7.2	
		129	硒及其化合物	原子荧光分光光度法《空气和废气监测分析方法》(第四版)国家环境保护总局(2007年)5.3.13.3	
	空气和废气	130	甲醛	空气质量 甲醛的测定 乙酰丙酮分光光 度法 GB/T15516-1995	
2	(含室内空 气)	131	多环芳烃	环境空气和废气 气相和颗粒物中多环芳 烃的测定 高效液相色谱法 HJ647-2013	测 16 种物质具体参数详见注8
		132	丙烯腈	固定污染源排气中丙烯腈的测定 气相色 谱法 HJ/T37-1999	
		133	光气	固定污染源排气中 光气的测定 苯胺紫 外分光光度法 HJ/T 31-1999	
		134	氯乙烯	固定污染源排气中氯乙烯的测定 气相色 谱法 HJ/T 34-1999	
		135	乙醛	固定污染源排气中乙醛的测定 气相色谱法 HJ/T 35-1999	
		136	丙烯醛	固定污染源排气中丙烯醛的测定 气相色谱法 HJ/T36-1999	
		137	氟化氢	固定污染源废气 氟化氢的测定 离子色谱法 (暂行) HJ 688-2013	
		138	硝基苯、对-硝 基甲苯、邻-硝 基甲苯、对-硝 基氯苯、间-硝 基氯苯、间-硝	环境空气 硝基苯类化合物的测定 气相 色谱法 HJ 738-2015	

第 11 页 共 43 页

批准的检验检测能力表

т. П	类别(产品/	产。	品/项目/参数	依据的标准(方法)名称 及编号(含年号)	限制范围
序号	项目/参数)	序号	名称		及说明
		139	五氧化二磷	环境空气 五氧化二磷的测定 钼蓝分光 光度法 HJ 546-2015	
		140	水溶性阴离子 (F、C1、Br、 NO ₂ 、NO ₃ 、PO ₄ 、 SO ₃ ² 、SO ₄ ²)	环境空气颗粒物中水溶性阴离子(F、Cl、Br、NO ₂ 、NO ₃ 、PO ₄ 3、SO ₃ 2、SO ₄ 2) 的测定离子色谱法 HJ 799-2016	
	空气和废气	141	酰胺类化合物	环境空气和废气 酰胺类化合物的测定 液相色谱法 HJ 801-2016	
2	(含室内空气)	142	挥发性卤代烃	环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解吸/气相色谱 HJ 645-2013	测 21 种物质具体参数详见注
		143	氯苯类 (氯代苯、1,4-二氯苯、1,2,4-三氯苯)	大气固定污染源 氯苯类化合物的测定 气相色谱法 HJ/T 66-2001	
		144	甲烷	固定污染源废气 总烃、甲烷和非甲烷总 烃的测定 气相色谱法 HJ 38-2017	
		145	六价铬	土壤中六价铬的测定 碱消解/分光光度 法 EPA 3060A:1996 和 EPA 7196A:1992	限特定委托方
		146	氰化物	土壤氰化物和总氰化物的测定 分光光 度法 HJ 745-2015	
		147	水分	土工试验方法标准 GB/T 50123-1999 4 含水率试验	
		148	氟化物	土壤质量 氟化物的测定离子选择电极法 GB/T 22104-2008	
		149	铅	土壤质量 铅、镉的测定 石墨炉原子吸收 分光光度法 GB/T 17141-1997	
3	土壤	150	镉	土壤质量 铅、镉的测定 石墨炉原子吸收 分光光度法 GB/T 17141-1997	限特定委托方
3	工機	151	铬	土壤总铬的测定 火焰原子吸收分光光度 法 HJ 491-2009	
		152	汞	土壤质量 总汞、总砷、总铅的测定原子 荧光法 第1部分:土壤中总汞的测定 GB/T 22105.1-2008	
		153	砷	土壤质量 总汞、总砷、总铅的测定原子 荧光法 第2部分:土壤中总砷的测定 GB/T 22105.2-2008	
		154	铝、钡、钙、 铁、镁、锰、 钼、钾、钠、 钴、钒、锡	土壤中金属元素的测定 硝酸消解/电感 耦合等离子发射光谱法 EPA 3050B:1996 和 EPA 6010C:2007	限特定委托方

第 12 页 共 43 页

附 2

批准的检验检测能力表

	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围
序号	项目/参数)	序号	名称	及编号(含年号)	及说明
	Will der Selfense Proges, Erroll (SSE	155	汞、砷、硒、 铋、锑	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013	
		156	镍	土壤质量 镍的测定火焰原子吸收分光光度法 GB/T 17139-1997	
		157	铜	土壤质量铜、锌的测定火焰原子吸收分光 光度法 GB/T 17138-1997	
		158	锌	土壤质量铜、锌的测定火焰原子吸收分光 光度法 GB/T 17138-1997	
		159	银、砷、铍、铜、铬、铜、铅、锑、硒、	土壤中金属元素的测定 硝酸消解/电感 耦合等离子发射光谱法 EPA 3050B:1996 和 EPA 6010C:2007	限特定委托方
			铊、锌	展览会用地土壤环境质量评价标准(暂行) HJ 350-2007 附录 A	
		160	氡浓度及表面 氡析出率	民用建筑工程室内环境污染控制规范 GB 50325-2010 附录 E	测做金硅面垒 型检测器 测氡仪法
		161	挥发性有机物	土壤和沉积物挥发性有机物的测定 吹扫 捕集/气相色谱-质谱法 HJ 605-2011	测 67 种物质具体参数详见注 10
3	土壤	162	半挥发性有机 物	土壤和沉积物半挥发性有机物的测定气 相色谱-质谱法 HJ 834-2017	測 64 种物质具 体参数详见注 11
		163	六六六 (α-六 六六、β-六六 六、γ-六六 六、γ-六六 六、δ-六六	土壤中六六六、滴滴涕的测定 气相色谱 法 GB/T 14550-2003	
		164	滴滴涕 (PP'-DDE、 OP'-DDT、 PP'-DDD、 PP'-DDT)	土壤中六六六、滴滴涕的测定 气相色谱 法 GB/T 14550-2003	
		165	多氯联苯	土壤和沉积物多氯联苯的测定 气相色谱 -质谱法 HJ 743-2015	測 18 种物质具体参数详见注 12
		166	有机氯农药	土壤和沉积物有机氯农药的测定 气相色谱-质谱法 HJ 835-2017	測 23 种物质具 体参数详见注 13
		167	总石油烃	土壤中总石油烃的测定 气相色谱法和气相色谱-质谱法 EPA 8015D:2003 和 EPA 8260C:2006	限特定委托方
		168	铍	土壤和沉积物铍的测定 石墨炉原子吸收 分光光度法 HJ 737-2015	

第 13 页 共 43 页

批准的检验检测能力表

	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围
序号	项目/参数)	序号	名称	及编号(含年号)	及说明
			多环芳烃(萘, 苊, 苊烯, 芴,	土壤和沉积物多环芳烃的测定 高效液相 色谱法 HJ 784-2016	
		169	菲, 蔥, 荧蔥, 芘, 苯并[a] 蔥, 苯并 [b] 荧蔥, 苯并 [a] 芘, 苯并 [ghi] 菲, 本 茚 [1, 2, 2-cd] 蔥, 二苯并 [a, h] 蔥	土壤和沉积物多环芳烃的测定 气相色谱 -质谱法 HJ 805-2016	
3	土壤	170	苯酚、2-氯酚、 邻-甲酚、对- 甲酚、间-甲 酚、2-硝基酚、 2,4-二氯酚、 2,4-二氯酚、 4-氯-3-甲酚、 2,4,6-三氯酚、 2,4,5-三 氯酚	土壤和沉积物酚类化合物的测定 气相色谱法 HJ 703-2014	
		171	丙烯醛、丙烯 腈、乙腈	土壤和沉积物丙烯醛、丙烯腈、乙腈的测定 顶空-气相色谱法 HJ 679-2013	
		172	全氮	土壤质量 全氮的测定凯氏法 HJ 717-2014	
		173	有效磷	土壤有效磷的测定 碳酸氢钠浸提-钼锑 抗分光光度法 HJ 704-2014	
		174	水溶性和酸溶 性硫酸盐	土壤水溶性和酸溶性硫酸盐的测定 重量 法 HJ 635-2012	
		175	总磷	土壤总磷的测定碱熔-钼锑抗分光光度法 HJ 632-2011	
		176	干物质和水分	土壤干物质和水分的测定 重量法 HJ 613-2011	
		177	有机碳	土壤有机碳的测定 重铬酸钾氧化-分光 光度法 HJ 615-2011	
		178	电导率	土壤电导率的测定 HJ 802-2016	
		179	氨氮	土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定 氯化物溶液-分光光度法 HJ 634-2012	

第 14 页 共 43 页

批准的检验检测能力表

序号	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围
丹 号	项目/参数)	序号	名称	及编号(含年号)	及说明
3	土壤	180	氧化还原电位	土壤氧化还原电位的测定 电位法 HJ 746-2015	
		181	六价铬	固体废物六价铬的测定 二苯碳酰二肼分 光光度法 GB/T 15555. 4-1995	
		182	氟化物	固体废物氟化物的测定离子选择电极法 GB/T 15555.11-1995	
		183	氰化物	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 G 离子色谱法	
		184	氣离子、溴酸 根、消酸根、氯酚 酸根、溴离磷酸 酸酸根、磷酸根 硫酸根 硫酸根	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 F 离子色谱法	
		185	镉	固体废物铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 15555.2-1995	
		186	铬	固体废物总铬的测定 火焰原子吸收分光 光度法 HJ 749-2015	
		187	镍	固体废物镍的测定 直接吸入火焰原子吸收分光光度法 GB/T 15555.9-1995	
	固体废弃物	188	铅	固体废物铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 15555. 2-1995	
4	/危险废物	189	砷	固体废物砷的测定 二乙基二硫代氨基甲酸银分光光度法 GB/T 15555.3-1995	
		190	铜	固体废物铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 15555.2-1995	
		191	锌	固体废物铜、锌、铅、镉的测定 原子吸 收分光光度法 GB/T 15555.2-1995	
		192	砷、锑、铋、 硒	危险废物鉴别标准浸出毒性鉴别 附录 E原子荧光法 GB 5085.3-2007	
		193	汞、砷、硒、 铋、锑	固体废物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 702-2014	
		194	滴滴涕	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 H 气相色谱法	
		195	六六六	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 H 气相色谱法	
		196	热灼减率	生活垃圾焚烧污染控制标准 GB 18485-2014	
		197	腐蚀性	固体废物腐蚀性测定 GB15555. 12-1995	
		198	氯丹	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 H 气相色谱法	

第 15 页 共 43 页

批准的检验检测能力表

FI	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围
序号	项目/参数)	序号	名称	及编号(含年号)	及说明
		199	六氯苯	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 H 气相色谱法	
		200	毒杀芬	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 H 气相色谱法	
		201	灭蚁灵	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 H 气相色谱法	
		202	乐果	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 I 气相色谱法	
		203	对硫磷	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 I 气相色谱法	
		204	甲基对硫磷	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 I 气相色谱法	
		205	马拉硫磷	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 I 气相色谱法	
		206	硝基苯	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 K 气相色谱法	
		207	二硝基苯	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 K 气相色谱法	
	固体废弃物	208	苯酚	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 K 气相色谱法	
4	/危险废物	209	2,4-二氯苯酚	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 K 气相色谱法	
		210	2, 4, 6-三氯苯 酚	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 K 气相色谱法	
		211	苯并[a]芘	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 K 气相色谱法	
		212	邻苯二甲酸二 丁酯	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 K 气相色谱法	
		213	邻苯二甲酸二 辛脂	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 K 气相色谱法	
		214	多氯联苯	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 N 气相色谱法	
		215	苯	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		216	甲苯	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		217	乙苯	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		218	二甲苯	危险废物鉴别标准浸出毒性鉴别 GB 5085.3-2007 附录 0 气相色谱/质谱法	

第 16 页 共 43 页 附 2

批准的检验检测能力表

⇔ □	类别(产品/	产品	品/项目/参数	依据的标准 (方法) 名称	限制范围
序号	项目/参数)	序号	名称	及编号(含年号)	及说明
		219	氯苯	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		220	1,2-二氯苯	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		221	1,4-二氯苯	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		222	丙烯腈	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		223	三氯甲烷	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		224	四氯化碳	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		225	三氯乙烯	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
		226	四氯乙烯	危险废物鉴别标准浸出毒性鉴别 GB 5085. 3-2007 附录 0 气相色谱/质谱法	
4	固体废弃物 /危险废物	227	银铍钴铁、钛铁锰铅铁铁锰铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁	固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法 HJ 781-2016	
		228	苯酚、2-氯酚、 邻-甲酚、对- 甲酚、间-甲酚、2-硝基酚、 2,4-二甲酚、 2,4-二氯酚、 4-氯-3-甲酚、 2,4,6-三氯 酚、2,4,5-三 氯酚	固体废物 酚类化合物的测定 气相色谱法 HJ 711-2014	
		229	总磷	固体废物 总磷的测定 偏钼酸铵分光光 度法 HJ 712-2014	
		230	腐蚀性鉴别	危险废物鉴别标准腐蚀性鉴别 GB 5085.1-2007	

附件9 检测报告

检测报告

报告编号: UTS19050179E

检测类别: 环境检测(委托检测)

项目名称: 安徽江淮汽车集团股份有限公司商务车分公司厂区土壤污染隐患排查与监测项目

检测地址: 安徽省合肥市肥西县丹霞路 282 号

委托单位: 安徽省通源环境节能股份有限公司

单位地址: 安徽省合肥市蜀山区望江西路 129 号五彩

国际 2501

江苏省优联检测技术服务有限公司 二〇一九年六月六日

THE PARTY

声明

- 一、 本报告无技术服务机构检验检测专用章无效。
- 二、本检测报告只对所检样品检测项目的检测结果负责。由其他机构和单位采集送检的样品,本技术服务机构仅对送检样品的检测结果负责,不对样品来源负责。
- 三、 如对本报告中检测结果有异议,请于收到报告之日起十五天内向本公司以书面方式 提出,逾期不予受理。
- 四、 委托检测,系个人、企业、社会团体、国家机关的自愿性委托检测;定期检测系按照法律法规进行的每年至少一次的检测;监督检测,系按国家有关法规进行的监督性检测;评价检测,根据生产工艺过程和实际操作及工人接触状况,对有职业卫生标准和检测方法的职业病危害因素的浓度或强度进行检测;事故性检测,系对发生职业危害事故时进行的紧急检测;日常检测,系指用人单位根据其工作场所存在的职业病危害因素进行的周期性检测。
- 五、 受检单位应保证提供资料的准确性以及所有检测活动是在真实反映企业正常生产 状况条件下进行的,本机构仅对满足该前提下的检测结果负责。
- 六、 任何对本报告未经授权之涂改、伪造、变更及不当使用均属违法,其责任人将承 担相关法律及经济责任, 我公司保留对上述违法行为追究法律责任的权利。
- 七、本报告未经江苏省优联检测技术服务有限公司书面批准,不得以任何方式部分复制;经同意复制的复制件,应由江苏省优联检测技术服务有限公司加盖检验检测专用章确认。

地 址:中国江苏省苏州市吴中区越溪街道北官渡路 50 号 3 幢

邮政编码: 215168 电 话: 0512-66358023

电子邮件: <u>services@uts.com.cn</u> 网 址: www.uts.com.cn

安徽省通源环境节能股份有限公司检测报告 编号:UTS19050179E

受安徽省通源环境节能股份有限公司委托, 我公司于 2019 年 05 月 20 日起对安徽江淮汽车集团股份有限公司商务车分公司厂区土壤污染隐患排查与监测项目土壤、地下水进行了检测,检测周期为 2019 年 05 月 20 日~06 月 06 日。

1、检测内容

类别	检测点位	检测项目	样品来源
土壤	见检测结果表	pH 值、六价铬、镉、铅、铜、镍、锌、汞、砷、 石油烃、挥发性有机物、半挥发性有机物	采样
地下水	见检测结果表	pH 值、氟离子、硝酸根离子、硫酸根离子、亚硝酸盐氮、氰化物、耗氧量、氨氮、六价铬、镉、铜、镍、铅、锌、汞、砷、挥发性有机物	采样

2、分析方法、检测仪器

检测项目名称	检测依据	方法检出限	检测仪器	仪器编号
土壌				
pH值	土壤检测 第 2 部分: 土壤 pH 的 测定 NY/T 1121.2-2006	-	pH 计 PHS-3C	E-1-585
六价铬	土壤中六价铬的测定 碱消解/分 光光度法 EPA 3060A:1996 和 EPA 7196A:1992	0.160mg/kg	紫外可见分光光 度计 UV-1601	E-1-289
镉	土壤质量 铅、镉的测定 石墨炉	0.01mg/kg	原子吸收分光光	
铅	原子吸收分光光度法 GB/T 17141-1997	0.1mg/kg	度计(火焰石墨炉 一体) TAS-990	E-1-513
铜	土壤质量铜、锌的测定火焰原子	1mg/kg	by or the way to	
锌	吸收分光光度法 GB/T 17138-1997	0.5mg/kg	原子吸收分光光 度计岛津	E-1-294
镍	土壤质量 镍的测定火焰原子吸收分光光度法 GB/T 17139-1997	5mg/kg	AA-6880	200 Standard
汞	土壤质量 总汞、总砷、总铅的测定原子荧光法 第1部分:土壤中总汞的测定GB/T 22105.1-2008	0.002mg/kg	原子荧光光度计 AFS-8510	E-1-514
砷	土壤质量 总汞、总砷、总铅的测定原子荧光法 第2部分:土壤中总砷的测定 GB/T 22105.2-2008	0.01mg/kg	原子荧光光度计 AFS-8510	E-1-514
石油烃 (C ₁₀ -C ₄₀)	土壤中总石油烃的测定 气相色 谱法 EPA 8015D:2003	0.10mg/kg	气相色谱仪 7820A	E-1-269

江苏省优联检测技术服务有限公司

第1页共15页

安徽省通源环境节能股份有限公司检测报告 编号:UTS19050179E

2、分析方法、检测仪器(续表)

检测项目名称	检测依据	方法检出限	检测仪器	仪器编号
土壤				
	土壤和沉积物 挥发性有机物的		气相色谱质谱联用 仪 7890B-5977B	E-1-535
挥发性有机物	测定吹扫捕集/气相色谱-质谱法 HJ 605-2011	见检测结果	气相色谱质谱联用 仪(配 E-1-507) 7890B/5977B	E-1-506
半挥发性有机 物	土壤和沉积物半挥发性有机物 的测定气相色谱-质谱法 HJ 834-2017	见检测结果	气相色谱质谱联用 仪 6890N5975C	E-2-014
地下水				
pH 值	便携式 pH 计法《水和废水监测 分析方法》第四版增补版(国家 环保总局)(2002年)3.1.6.2	-	便携式 PH 计 PHB-4	E-1-355
氟离子	水质 无机阴离子(F、Cl、NO2、	0.006mg/L		
硫酸根离子	Br-, NO ₃ -, PO ₄ ³⁻ , SO ₃ ²⁻ , SO ₄ ²⁻)	0.018mg/L	离子色谱仪	C-1-017
硝酸根离子	的测定 离子色谱法 HJ 84-2016	0.016mg/L	861-813	C-1-01
亚硝酸盐氮	生活饮用水标准检验方法 无机	0.001mg/L	紫外可见分光光度 计 UV-1601	E-1-289
氰化物	非金属指标 GB/T 5750.5-2006	0.002mg/L	紫外可见分光光度 计 UV-1800	E-1-305
耗氧量	生活饮用水标准检验方法 有机 物综合指标 GB/T 5750.7-2006	0.05mg/L	=	-
氨氮	生活饮用水标准检验方法 无机 非金属指标 GB/T 5750.5-2006	0.02mg/L	紫外可见分光光度 计 UV-1800	E-1-305
六价铬	生活饮用水标准检验方法 金属 指标 GB/T 5750.6-2006	0.004mg/L	紫外可见分光光度 计 UV-1800	E-1-305
镉		0.005mg/L		
铜	水质 32 种元素的测定 电感耦	0.04mg/L	等离子体发射光谱	
镍	合等离子体发射光谱法	0.007mg/L	(ICP-OES)	C-1-084
铅	НЈ 776-2015	0.07mg/L	OPTIMA 8300	
锌		0.009mg/L		
砷	水质 汞、砷、硒、铋和锑的测	0.3μg/L	原子荧光光度计	E 1.51
汞	定 原子荧光法 HJ 694-2014	0.04µg/L	AFS-8510	E-1-514
挥发性有机物	水质 挥发性有机物的测定 吹 扫捕集/气相色谱-质谱法 HJ 639-2012	见检测结果	气相色谱质谱联用 仪(配 E-1-507) 7890B/5977B	E-1-506

江苏省优联检测技术服务有限公司

第 2页共 15 页

安徽省通源环境节能股份有限公司检测报告 编号: UTS19050179E

0				l
1				ŀ
				l
				l
				ŀ
				l
				l
				ŀ
				L
			ı	
			ı	
			I	
			Ì	
			l	
			Ì	
			l	
			ŀ	
			l	
			l	
			ŀ	
			l	
			١	
			l	
			l	
			1	
1	H	4		
:	世界	T		
	\$	1		
-	•	5		
			_	

	Т		20		Т			Т	Т	Т	Т	Т	Т					Т	Т	Т	Т	Т	_	Т	Т	T	_		Т	Т
S4(2.5- 3m)		14	14. 31. 11.	7.98	QN		0.07	23.9	31.2	32.9	73.2	0.0197	15.0	THE REAL PROPERTY.	95.5	-A186812	QN	QN	QN	R	QN	QN	R	Q.	QN N	QN	Q	QN	2	S
S4(0.5- 1m)		12	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	8.48	N N	Sales Committee	0.07	18.4	32.5	29.9	71.6	0.0160	18.8	と 関でる歌	113		ON	ND	ND	ON	QN	QN	ON	QN	QN	QN	ND	ON	QN	CIN
S4(0- 0.5m)		Π	100 TOTAL	8.13	ND		0.08	28.5	22.9	25.3	56.1	0.0231	14.9	一年を	115	The state of	QN	ND	QN	ON.	N N	ON.	QN	N N	N N	ON	ON	ON	ON.	N N
S5(2.5- 3m)		10		7.91	ON	100	0.10	19.1	28.7	31.8	55.7	0.0113	19.2		_		ND	QN.	ND	ND	ON	QN	ND	QN	QN	N N	ON.	ON	QN	QN
S5(0.5- 1m)		00	C.	8.23	QN	The state of the s	0.10	20.8	32.0	36.8	59.5	0.0114	19.6	100	_	100	R	Q.	QN	QN.	QN	ON	N N	ON.	QN.	ND	ON	QN	ON	QN
S5(0- 0.5m)		7	The state of the s	6.28	N N	100	0.11	15.6	28.5	35.2	57.5	0.0143	19.5	Alle Carried	_	The state of the s	QN.	QN	QN.	ON	ND	QN.	QN.	Q.	N N	QN.	N N	N N	QN	2
S3(3.5- 4m)		9	10 March 10	7.74	ND ND		0.10	24.3	31.5	38.0	63.8	0.0135	19.8	Carlo Company	125	COURT SERVICE	ND ND	ND	ND	ND	ND ND	ON	ND	ON.	ON	QN	ND	ND	ON	ON.
S3(2.5- 3m)		0		8.37	ND		90.0	20.9	20.5	21.4	43.9	0.0196	15.3		106		QN	QN	QN.	ON	ON	ON	ND	ON	ND	ND	ON	ON	ON	DN.
S3(0.5- 1m)-P	,	A		8.57	ON		0.05	17.0	30.5	32.7	63.2	0.0382	16.8		110		ON	N N	ON	ON	ON	ND	ND	ND	ND	ON O	ND	ND	ON	ON
S3(0.5- 1m)	,	3		8.63	ND		90.0	17.4	30.7	31.9	57.2	0.0385	15.2		122		N N	Q.	ND	ND	ON	ND	ND	ND	ND	ND	ND	ND	ON	N N
S1(0- 0.5m)		1		8.04	N N		60.0	21.7	36.4	29.8	131	0.102	15.6		/		ND	ND	ON	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ON
羊品名称	金宝编号	检出限		/	0.160	The State of	0.01	0.1	1	5	0.5	0.002	0.01	Later Anna	0.10		1.3	1.1	1.0	1.2	1.3	1.0	1.3	1.4	1.5	1.1	1.2	1.2	1.4	1.3
客户样品	实验室	单位	September of	无量纲	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	A STATE OF	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
样品状态:土壤			无机及非金属元紫	pH值	六价格	金属	領	铅	侚	鴾	栋	米	中	总石油烃	C ₁₀ -C ₄₀	挥发性有机物voc	四氯化碳	氣仿	氣甲烷	1,1-二氯乙烷	1,2-二氯乙烷	1,1-二氟乙烯	顺式-1,2-二氯乙烯	反式-1,2-二氯乙烯	二氯甲烷	1,2-二氯丙烷	1,1,1,2-四氯乙烷	1,1,2,2-四氯乙烷	四氯乙烯	1,1,1-三氯乙烷

江苏省优联检测技术服务有限公司

第3页共15页

安徽省通源环境节能股份有限公司检测报告 编号: UIS19020179E

S4(2.5-3m) R B B QN. 2 N B 2 2 22 R 22222 14 S4(0.5-1m) 999 2 2 B 222 222 222 B B B 見見 图图图 2 12 S4(0-0.5m) 日日日 見見見 R 99 S5(2.5-3m) 日日日 2 日日 10 S5(0.5-1m) 見見 B 2 2 S5(0-0.5m) 見見 R 7 S3(3.5-4m) 9 S3(2.5-3m) 88888 日日 R 日日 888 見見 2222 5 S3(0.5-1m)-P 22222 222 2 S3(0.5-1m) 2 2 見見 B 2 2 222 2 B 2 2 2 2 S1(0-0.5m) 2 2 見見 8 8 N R 2 見見 包包包 見見見 B 2 实验室编号 客户样品名称 检出限 1.2 0.09 90.0 0.09 1.2 1.2 1.0 1.9 1.2 1.5 1.5 1.2 1.3 1.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 单位 µg/kg µg/kg µg/kg ug/kg µg/kg μg/kg ug/kg µg/kg µg/kg µg/kg µg/kg mg/kg mg/kg mg/kg mg/kg mg/kg µg/kg µg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 4に甲苯 μg 半挥发性有机物SVOC 苯并(b) 荧蒽 苯并(k) 荧蒽 茚并(1,2,3-cd)芘 1,1,2-三氯乙烷 1,2,3-三氯丙烷 对、间-二甲苯 样品状态: 土壤 苯并 (a) 蒽 二苯并(ah)蒽 苯并(a) 芘 1,2-二氯苯 1,4二氯苯 三氯乙烯

第4页共15页

江苏省优联检测技术服务有限公司

苯胺 ₩

硝基苯 2-氯苯酚

苯乙烯

米田

2株

氯乙烯

氟苯

检测结果

安徽省通源环境节能股份有限公司检测报告 编号: UIS19050179E

样品状态: 土壤	客户	客户样品名称	S6(0- 0.5m)	S6(0.5- 1m)	S6(0.5- 1m)-P	S6(2.5- 3m)	S7(0- 0.5m)	S7(0.5- 1m)	S7(2.5- 3m)	S8(0- 0.5m)	S8(0.5- 1m)	S8(2.5- 3m)	S8(2.5- 3m)-P
	茶	实验室编号	15	16	t	o F	Ç.	0					
	单位	检出限	CI	10	В	18	19	70	22	23	24	26	O
无机及非金属元素	A COUNTY OF THE PARTY OF THE PA							という			- Value	ではいいは	
	无量纲	/	8.01	7.63	7.68	8.61	8.67	8.20	8.69	8.61	8.17	7.42	7.46
六价格	mg/kg	0.160	ON	ND ND	Q.	QN	QN.	ND ND	QN	ON	0.219	Q.	ND ND
金属	1	The same	THE STATE OF		1 11 1		The state of the s	NAME OF STREET	100	1-13-20			
網	mg/kg	0.01	90.0	90.0	0.07	80.0	90.0	0.07	0.05	80.0	0.03	90.0	0.06
铅	mg/kg	0.1	19.0	12.6	13.1	25.3	5.75	20.6	23.6	28.3	20.7	18.2	18.8
御	mg/kg	1	28.5	30.6	30.8	29.9	7.74	24.5	28.5	28.2	26.5	30.2	29.9
缐	mg/kg	5	27.4	32.7	32.6	36.4	7.70	26.2	32.1	28.2	28.0	33.0	34.7
梓	mg/kg	0.5	74.1	63.9	67.5	8.09	13.3	74.2	55.4	6.69	50.4	60.1	64.0
来	mg/kg	0.002	0.0310	0.0135	0.0144	0.0140	0.0165	0.0190	0.0140	0.0235	0.0160	0.0285	0.0299
砷	mg/kg	0.01	15.3	14.8	15.5	19.2	19.5	11.2	3.51	3.91	5.11	10.2	11.4
总石油烃	TO THE	Sales of the last	Same .	1.77		THE STATE OF	The second	-14				一 一	
C ₁₀ -C ₄₀	mg/kg	0.10	/	/	/	/	/	/	/		_	_	_
挥发性有机物voc						The state of the s	B	ST. X. Tall			No.	The part of	.)/
四氯化碳	µg/kg	1.3	ND	ND	ON	N	ND ND	ON	QN	ON	ON.	ND	ND ND
氯仿	µg/kg	1.1	ON	ND	ON	ON	QN	N N	N N	QN	QN	ON	ND
氯甲烷	µg/kg	1.0	ND ND	ND	ND	ND	ON	QN	ND ND	QN	ON.	ON	ON
1,1-二氯乙烷	µg/kg	1.2	ND	ND	ND	ON	ND	ON	ND	N N	ON.	ND	N
1,2-二氮乙烷	µg/kg	1.3	QN	ND	ON	ND	ND	ON	ND	N N	N ON	ND	N N
1,1-二氯乙烯	µg/kg	1.0	QN	ND	ND	ND	ND	ON	QN.	QN.	QN	QN	ND
顺式-1,2-二氯乙烯	µg/kg	1.3	ND	ON.	ND	ND	ND	ON	ND	ON	N N	ND	QN
反式-1,2-二氯乙烯	µg/kg	1.4	QN	ON.	ND	ND	ON	ON	ND	N N	QN	ND	QN
二氯甲烷	µg/kg	1.5	ND	ND	ND	ON	ND	ND	ND	EN C	QN	ON	ON
1,2-二氯丙烷	µg/kg	1.1	MD	ND	ND	ON	ON	ON.	QN	QN.	N N	QN	QN.
1,1,1,2-四氯乙烷	µg/kg	1.2	QN	ND	ND	ND	ND	ON	ND	ON	N N	ND	ND
1,1,2,2-四氟乙烷	µg/kg	1.2	ON	ND	ON	ND	ND	ND	ND	ON	QN	ND	N N
四氯乙烯	µg/kg	1.4	ND	ND	ND	ON N	ON	ON	N ON	ND	ND	QN	ON
1,1,1-三氯乙烷	µg/kg	1.3	Q.	ON	ON	N	ON	ON.	QN	N N	DQ.	ON	N N

江苏省优联检测技术服务有限公司

第5页共15页

第6页共15页

安徽省通源环境节能股份有限公司检测报告 编号: DIS19050179E

株式	1位公伦耳	(IIII)	Im)-P	эш)	0.5m)	1m)	3m)	0.5m)	m)	3m)	3m)_D
单/kgm hg/k	一段田黒り	;								Î		· (mc
	检出限	15	91	В	18	19	20	22	23	24	56	ပ
	1.2	ND ND	QN	QN.	Ð	QN.	R	R	CN.	CN	S	CN.
+	1.2	ND	QN	QN.	ON.	ND ND	£	R	2	E R	2	
	1.2	ND	ND	ND ND	ND	QN	R	Q.	Q.	R	QN	
L/M H/S/N/S	1.0	QN	ND	ON.	ND	QN.	QN.	QN.	R	S)	QN	2
	4	Q.	ON	ND	ND	ND	QN	QN.	ON.	QN.	N N	QN
+	4	Ð	QN	Ð	ND	ON	N N	QN	N ON	ON.	QN	ON
+	4	SD SD	QN	ND	ND	ON	ND	Q.	QN	QN	Q.	ON ON
*	1.5	R	QN	QQ	ON	ND	ND	Q.	QN.	ON	Q2	QN
乙苯 ng/kg	_	QN	QN	QQ	ND	ND	ND ND	N N	QN	S	ND ND	QN.
vin.	1:1	S	Q.	ON	ND	ND	ND	N N	Ð	ON	QN.	Q.
+	1.3	QN	QN	QN	ON	ND	ND	Q.	QN	N N	QN.	N N
₩	1.2	Q.	ND ND	Q	ND	ND	ND	QN.	Q.	Q.	Q	ND
邻二甲苯 ng/kg	1.2	ND	ND	ON	ND	QN	Ø	ND	Ð	N N	QN	CIN
华挥发性有机物SVOC			2				大學是此一個	中 以下	1	Marie Commission	Service Part	1.5755
硝基苯 mg/kg	60.0	ND	QN	QN	Q.	N N	QN	QN	Q.	CN.	E	CN.
2-氯苯酚 mg/kg	90.0	ND	QN	QN	N N	ON	QN	R	Q.	Q.	2	S
苯并(a) 蒽 mg/kg	0.1	ON	N N	ON.	£	R	Ð	Q.	E S	E S	2	C N
苯并 (a) 芘 mg/kg	0.1	ON	EN	N N	N N	N N	2	QN	Q.	5	2	
苯并 (b) 荧蒽 mg/kg	0.2	ND	N N	QN.	QN	Q.	R	N	Q	2	E S	2
苯并 (k) 荧蒽 mg/kg	0.1	ND	ND	Ð.	N	QN	Q.	ND	QN.	N N	CN.	2
菌 mg/kg	0.1	ND	ND	ON	Ð	Ð	ON	Q.	R	QN	QN	2
二苯并(ah)蒽 mg/kg	0.1	ND	ND	N N	Ø.	Q.	ON.	QN	QN	GN.	E	5
茚并(1,2,3-cd)芘 mg/kg	0.1	ND	ON	N N	QN	QN.	S.	QN	R	Q.	QN	E S
秦 mg/kg	0.09	QQ.	ND	ON	Q.	Ð	ON	Q.	Q.	Q.	S	N N
苯胺 mg/kg	1.0	Q.	QQ	ND ND	ON	ND	QN.	N N	QN	QN	S	ND

江苏省优联检测技术服务有限公司

安徽省通源环境节能股份有限公司检测报告 编号: UTS19050179E

客户样品名称 S9(0.5- S9(2.5- 1m) 3m)	S9(0.5-	S9(2.5	1	S9(3.5-	S10(0.5-	S10(1.5-	S10(3.5-	S11(0-	S11(0-	S11(0.5-	S11(2.5-	S2(0-
		-				(m)	(mm)	(my coo	r-(mc-0	(iii)	finc	(mc.o
単位 检出限 28 30 31	28 30		31		32	33	35	36	D	37	39	40
							- 北京大学会			100	CARRIED STATE	Total Section
无量纲 / 8.62 8.32 8.20	8.32		8.20		8.14	8.04	8.27	8.89	8.86	8.07	8.49	8.64
mg/kg 0.160 ND 0.222 ND	ND 0.222		ND		QN	ND	QN.	0.414	0.442	QN	Ð	QN
			1	-	And the second			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 1 SERVE	CHEMINA	1000
mg/kg 0.01 0.07 0.08 0.06	0.07 0.08		0.06		0.12	90.0	90.0	0.07	90.0	0.09	90.0	90.0
mg/kg 0.1 33.3 22.8 24.5	22.8		24	2	25.9	11.0	19.8	18.8	19.9	11.6	16.0	14.8
1 30.5 26.6	26.6	\dashv	26.	_	28.2	28.2	32.2	32.5	32.2	29.3	27.9	25.7
-	37.6 25.1	-	26.8	~	31.1	37.0	37.1	31.1	30.4	32.1	38.8	30.1
0.5 64.6 59.1	64.6 59.1	\dashv	49.3	_	50.8	57.4	64.6	109	111	64.5	58.7	9.98
mg/kg 0.002 0.0219 0.0285 0.0225	0.0219 0.0285	-	0.022	5	0.0118	0.0158	0.0338	0.0284	0.0283	0.0181	0.0126	0.0202
mg/kg 0.01 13.2 13.7 14.6	13.2 13.7	\dashv	14.6		14.3	18.7	19.6	19.8	19.1	17.8	19.2	18.3
									1	A Part of the Part		The state of the s
mg/kg 0.10 / / /	/ / /	/ /	_		1	/	/	_	/		_	
			-	- 2			A CONTRACTOR			THE PERSON		1 1 CH
µg/kg 1.3 ND ND ND	ON		ON		ND	ON	QN	QN	QN	QN	QN	ND
μg/kg 1.1 ND ND ND	QN		N	_	ON	ON	QN	QN	QN	ON	ON	Q.
4	QN		Z		ND	ON	QN	QN	QN.	ON	QN	ND
1.2 ND	QN		Z		ND	ON	ND	ND	ND	QN.	QN	QN
1.3 ND ND	Ð.		z	QN	QN	ND	ON	ND	ON	ND	QN	N ON
1.0 ND ND	QN		Z		QN	QN.	ON	ND	ON	ON	QN	QN
1.3 ND ND	QN		Z		QN	Q.	ON O	ND	ON	ND	QN	QN
	Ð		Z		ND	ON	ND	ON	ON	ND ND	Ð	QN
μg/kg 1.5 ND ND ND	<u>R</u>		Z		ND	OIN	ND	OIN	EN	E S	QN	ND ND
μg/kg 1.1 ND ND ND	QN		Z	0	ND	QN	ON	QN.	N O	QN	QN	N N
ON ON	QN		Z	ND	ND	ND	QN	QN	ON.	ND	QN	ON
1.2 ND ND	Ð			ND	QN	ND	ND	ON	ON.	QN	QN	ND
1.4 ND ND	Ð		Z		QN	N N	ND	ND	ND	ON	ON	N N
μg/kg 1.3 ND ND ND	QQ	- 6	Z	_	QN	Q.	QN	R	ND	ND ON	QN	ND

江苏省优联检测技术服务有限公司

第7页共15页

-173-

安徽省通源环境节能股份有限公司检测报告 编号: UTS19050179E

3、检测结果

样品状态: 土壤	黎	客户样品名称	S2(0.5- 1m)	S2(2.5- 3m)	S2(2.5- 3m)-P	运输空白	全程序空白
	來	实验室编号	-	ç	ţ		
	单位	检出限	41	43	ц	KBI	KB2
无机及非金属元素							
pH值	无量纲	/	8.27	79.7	7.63	_	_
六价格	mg/kg	0.160	QN	QN	Ð	_	_
金属			100	F	-	198	
镉	mg/kg	0.01	80.0	0.07	0.07	_	_
铅	mg/kg	0.1	20.7	18.8	17.9	_	_
絧	mg/kg	1	30.6	25.8	25.7	_	_
缐	mg/kg	5	69.5	29.6	29.4	/	1
韓	mg/kg	0.5	616	63.9	63.3	/	_
来	mg/kg	0.002	0.0223	0.0204	0.0202	/	_
砷	mg/kg	0.01	15.6	14.4	15.5	_	_
总石油烃		4 1			No. of Street, or other Persons	17 18 4	
C_{10} - C_{40}	mg/kg	0.10	/	/	_	/	_
挥发性有机物V0C		1 1 1					
四氯化碳	µg/kg	1.3	ND	ON	QN.	QN	Q.
氯仿	µg/kg	1.1	ND	ND	N N	QN	S S
氯甲烷	µg/kg	1.0	ND	N N	Ð	QN	Ð
1,1-二氯乙烷	µg/kg	1.2	ND	ND ND	ND	QN	QN.
1,2-二氯乙烷	µg/kg	1.3	ND	QN	QN	QN	Q.
1,1-二氯乙烯	µg/kg	1.0	ND	ND	N N	S	QN
顺式-1,2-二氯乙烯	µg/kg	1.3	ND	QN	R	QN	Ð
反式-1,2-二氯乙烯	µg/kg	1.4	ND	ON	QN	ND	Q.
二氯甲烷	µg/kg	1.5	ND	ND	ND ND	N N	QN.
1,2-二氯丙烷	µg/kg	1.1	ND	ON	ND	QN.	E S
1,1,1,2-四氯乙烷	µg/kg	1.2	ND ND	EN	QN	QN	£
1,1,2,2-四氯乙烷	µg/kg	1.2	ND	ON	QN	QN.	ND
四氯乙烯	µg/kg	1.4	ND	ND	QN.	ND ND	ND
1,1,1-三氯乙烷	µg/kg	1.3	ND	ON	ND	QN.	Ð

江苏省优联检测技术服务有限公司

品状态: 土壤	客户	客户样品名称	S2(0.5- 1m)	S2(2.5- 3m)	S2(2.5- 3m)-P	运输空白	全程序空白
	茶	实验室编号	1	Ş	t		
	単位	检出限	4	43	n	KB.	KB2
1,1,2-三氯乙烷	µg/kg	1.2	QN	ND ND	QN	QN	QN
三氯乙烯	µg/kg	1.2	QN	QN	S	P.	ND
1,2,3-三氯丙烷	µg/kg	1.2	QN	EN	QX	Ð	N
氯乙烯	µg/kg	1.0	ND ND	N N	N ON	Ð	N N
举	µg/kg	1.9	ON	ND	EN	QN	ND
氣本	µg/kg	1.2	QN	QN	QN	QN.	QN
1,2-二氯苯	µg/kg	1.5	ON.	ND ND	QN.	QN	N N
1,4二氯苯	µg/kg	1.5	ND	ND ND	QN	QN	N N
42	µg/kg	1.2	ON	Ð.	QN	Ð	R
苯乙烯	µg/kg	1.1	ON	ND	QN	QN	ND ND
甲苯	µg/kg	1.3	ON	ND	QN	QN	ND ND
对、间-二甲苯	ug/kg	1.2	ON	ND ND	Ð	Ð	ND
邻二甲苯	µg/kg	1.2	ON	ND	QN	QN.	ND
挥发性有机物SVOC	20	No. of the last of					
硝基苯	mg/kg	60.0	ND ND	QN	QN.	-	
2-氯苯酚	mg/kg	90.0	QN	QN	N N	_	/
(a)	mg/kg	0.1	QN	Q.	QN	_	/
苯并(a) 芘	mg/kg	0.1	QN	NO NO	QN	/	/
苯并 (b) 荧蒽	mg/kg	0.2	ND ND	N N	ND ND	_	/
苯并(k) 炭蔥	mg/kg	0.1	ND	ND	N N	_	
埋	mg/kg	0.1	ND	ON	ND	_	/
二苯并(ah)蒽	mg/kg	0.1	QN	N N	ND ND	_	/
茚并(1,2,3-cd)芘	mg/kg	0.1	QN	ON.	QN.	_	/
摐	mg/kg	60.0	QN.	QN	EN	/	
苯胺	mg/kg	1.0	ND	ON	ND	/	/

安徽省通源环境节能股份有限公司检测报告 编号: UJS19050179E

3、检测结果

客户样品名称
<u>松 史 </u>
7.18 7.26
0.006 0.658 0.648
0.016 0.492 0.165
0.018 3.90 20.9
0.001 0.009 0.002
0.002 ND ND
0.05 0.79 3.04
0.02 0.022 0.026
0.004 ND ND
0.005 ND ND
0.04 ND ND
0.007 ND ND
0.07 ND ND
0.009 ND 0.032
0.04 ND ND
0.3 0.6 0.9
A STATE OF THE PERSON NAMED IN
1.2 ND ND
1.0 ND ND
U.1 ND ND
1.2 ND ND
1.2 ND ND
1.4 ND ND
1.4 ND ND
1.5 ND ND

江苏省优联检测技术服务有限公司

第11页共15页

-176-

安徽省通源环境节能股份有限公司检测报告 编号: UIS19020179E

3、检测结果

全程序空白		KB4	ND ON	QN.	QN	- R	QN N	Ð	₽ Q	N ON	QN	EN CHARLES	E S	QN.	QN.	QN	QN	QX	NO NO	ND	QN	QN.	QN	ND	QN	ND	ND	N	ND
运输空白		KB3	ND	R	N N	Ð	QN.	QN ON	N ON	QN	QN.	QN	Q.	EN S	QN.	QN	N N	N N	N N	QN	ND	N N	QN	QN	ND	N N	Q.	Q.	ON
WI		104	QN	QN.	QN	S S	QN ON	NO ON	QN	ND	ON	ON	QN.	QN.	QN	QN.	QN	R	ON.	N	ON	ND	N N	ON.	QN.	QN	QN	Ø	QN
W4		103	ND ND	R	QN.	QN	QN	Q.	QN	Q.	ON.	QX	QN	ND	ND ON	ON	QN	QN	QN.	QN.	QN	Ð	QN	QN.	QZ	æ	Q.	QN	Ø
W3		102	N	Q2	QN.	N	Ð.	QN.	ND	QN.	Ð	Ð	Q.	Q.	Q.	ND	ND QN	Q	Ð.	QN	QN.	QN	EN CR	Ð.	QN.	Q.	ON.	EN	ON
W2-P	;	×	QN.	QN	Q.	QN	QN	ON.	E S	ND ON	Ð	ND	ON	<u>R</u>	QN.	Q.	QN	QN	QN	QN	QN	ND	ON	ND	ON	ON	ND	ND	N N
W2	101	101	ND	QN.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND QN	ND	QN	ON ON	ND	ND	ND ON	Ð.	ND	ON	ND	ND	ON ON	ND	ND	QN
W5	100	100	ND	ON	ND	ND	ON	ND	ND	ND	ND	ON	ND	ND	ND	OND	ON	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ð.
客户样品名称	实验室编号	检出限	1.4	1.2	1.5	1.4	1.5	1.2	1.2	1.3	1.4	1.4	1.2	1.2	1.2	1.5	1.0	8.0	2.2	9.0	1.1	1.4	1.2	0.7	8.0	8.0	1.0	6.0	0.7
客户	茶	单位	ηg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	mg/L	µg/L	μg/L	ng/L	µg/L	µg/L	µg/L	ng/L	ng/L	ηg/L	µg/L
样品状态: 地下水			1,2-二氯乙烷	1,1-二氯丙烯	四氯化碳	长	二溴甲烷	1,2-二氯丙烷	三氯乙烯	一溴二氯甲烷	甲苯	1,3-二氯丙烷	二溴氯甲烷	1,2-二溴乙烷	四氯乙烯	1,1,1,2-四氯乙烷	氣茶	乙苯	间, 对-二甲苯	苯乙烯	1,1,2,2-四氯乙烷	邻二甲苯	1, 2, 3-三氯丙烷	异丙苯	溴苯	正丙苯	2-氯甲苯	4-氯甲苯	1,3,5-三甲米

江苏省优联检测技术服务有限公司

第12页共15页

-177-

第13页共15页

安徽省通源环境节能股份有限公司检测报告 编号: UIS19050179E

3、检测结果

岩下大										
	客户	样品名称	WS	W2	W2-P	W3	W4	W1	运输空白	全程序空白
	秋	:验室编号	100		,		3			
	单位	松出限	100	101	×	102	103	104	KB3	KB4
基苯	ng/L	1.2	N N	ND	QN	ND	Ð.	QZ	ON	QN
4-三甲苯	µg/L	8.0	QN	QN	QN.	QN	EN CHA	S S	ON	QN
基苯	ng/L	1.0	Q.	ND	NO ON	QN	N N	QN.	QN	QN
丙基甲苯	µg/L	8.0	QN.	QN	QN.	QN	E E	QN	ON	GN.
正丁基苯	µg/L	1.0	QN	ND	QN.	QN	S S	QN	QN	Q
溴-3-氯丙烷	ng/L	1.0	QN	ND	NO ON	Ð.	N ON	QN	QN	GN

江苏省优联检测技术服务有限公司

安徽省通源环境节能股份有限公司检测报告 编号: UTS19050179E

		有证物质	证书值 (mg/kg)	8.61±0.07		0.066±0.007	26±2	26±2	37±2	64±5	0.026±0.003	12.7±0.7	_		_	
		有	检测值 (mg/kg	8.65	/	0.068	25.6	27.0	36.0	65.4	0.0268	12.6	-	_		
			指标控制%	_	50~120	_	_	_	_	_	/	_	_	50~120	50~120	
		样品加标	回收率 (范围) %		91~92	/	/	/	/	_	/	_	_	60.3~99.2	52.8~78.2	_
	加标回收率		五标样 (个)	_	3	_	_	_	_	-	_	-	_	4	3	
表	加标[指标 控制%		_	_	_	_	_	_	_	_	50~120	_	50~120	
*		空白加标	回收率 (范围) %	_	_	_	_	1	,	_	_	,	74.1	_	59.2~75.9	,
果统			点 # 个	_	_	_	_	,	_	_	_	_	1	_	1	
ポ			控制值%	/	20	20	20	20	20	20	20	20	20	20	20	
控制		室平行	计算值%		0	0~9.1	0~8~0	1.3~1.8	0.8~4.7	0.4~7.5	0.5~2.5	1.4~2.9	12.6	0	0	8~14
坤		实验	计算方式	,	Θ	Θ	Θ	Θ	0	Θ	Θ	Θ	Θ	Θ	Θ	8
质	平行样		平行样(个)	_	3	4	4	4	4	4	4	4	-	5	3	
	и		控制值%	20	20	20	20	20	20	20	20	20	20	20	20	
		现场平行	计算值%	0	0	0~9.1	1.2~2.8	0.2~0.5	0.2~2.5	0.5~5	0.2~3.2	1.8~5.6	5.2	0	0	13~14
		现均	计拉过过	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0	Θ	Θ	Θ	Θ	13
			平羊个	5	5	5	5	5	5	5	5	5	1	5	5	
		样品粉		36	36	36	36	36	36	36	36	36	7	38	36	
				pH值	六价铬	網	铅	絢	微	歩	坐	車	石油烃	VOCs	SVOCs	质控率%
			米						州							

第14页共15页

X.小.欣.外.有.欣.公.均

江苏省优联检测技术服务有限公司

第15页共15页

江苏省优联检测技术服务有限公司

安徽省通源环境节能股份有限公司检测报告 编号: NIS18110172E

0.168±0.015 0.210±0.010 0.345±0.017 5.0±0.5µg/L 5.0±0.5µg/L 1.42±0.10 2.62±0.10 3.0±0.30 3.0±0.30 3.0±0.3 证书值 (mg/L) 3.0±0.30 3.0±0.3 3.0±0.3 3.0±0.3 3.0±0.3 有证物质 检测值 5.2592 0.350 5.1660 (mg/L 3.040 0.165 0.213 3.116 2.989 3.034 2.898 1.45 2.53 3.101 2.971 2.993 指标控制% 61.8~88.6 50~120 样品加标 回收率 (范围) **核**次: 加标样 (个) 指标控制% 表 空白加标 回收率 (范围)% * 立 立 で か) 然 黑 控制值% 审核: 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 ポ 计算值% 垂 实验室平行 6.0 1.3 1.3 1.8 7.7 0 0 0 4 0 0 0 0 0 0 0 12 控 ①相对偏差;②相对允许差;③相对标准偏差;④绝对允许差。 计算方式 Θ Θ Θ Θ Θ Θ 0 Θ Θ Θ Θ Θ Θ Θ Θ Θ 曲 5 质 · · · · · · 控制值% 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 计算值% 0.1 2.7 1.8 3.7 0.3 0 1.5 0 0 0 0 0 0 0 0 0 0 编制: 12~16 计算方式 Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ 平行样(个) 样数() 硫酸根离子 硝酸根离子 亚硝酸盐氮 质控率% 氟离子 氰化物 耗氣量 六价铬 pH值 VOCs 氨氮 項目 鍋 垂 缬 母 体 米 毒 备注: 类别 地水

附件 10 样品采集及检测现场

1. S1 采样现场及样品采集

2.S2 采样现场及样品采集

3.S3 采样现场及样品采集

4.S4 采样现场及样品采集

5.S5 采样现场及样品采集

6.S6 采样现场及样品采集

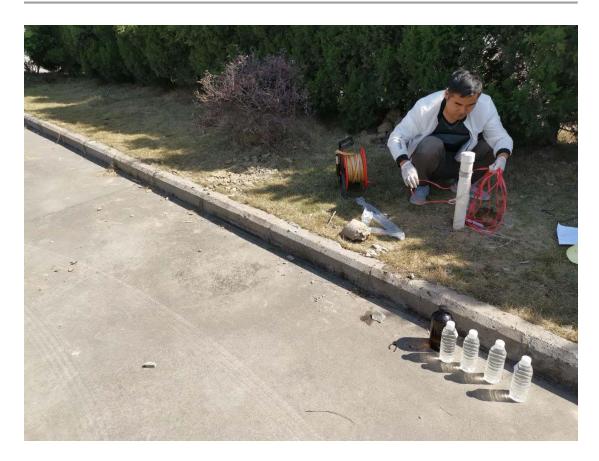
7.S7 采样现场及样品采集

8.S8 采样现场及样品采集

9.S9 采样现场及样品采集

10.S10 采样现场及样品采集

11.S11 采样现场及样品采集


洗井取样照片:

